首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive and metabolic anomalies in polycystic ovary syndrome (PCOS) have been associated with the dysregulation of sex steroid receptors. Kelulut honey (KH) has been shown to be beneficial in PCOS-induced rats by regulating folliculogenesis and the oestrus cycle. However, no study has been conducted to evaluate KH’s effect on sex steroid receptors in PCOS. Therefore, the current study examined the effects of KH, metformin, or clomiphene alone and in combination on the mRNA expression and protein distribution of androgen receptor (AR), oestrogen receptor α (ERα), oestrogen receptor β (ERβ), and progesterone receptor (PR) in PCOS-induced rats. The study used female Sprague-Dawley rats, which were treated orally with 1 mg/kg/day of letrozole for 21 days to develop PCOS. PCOS-induced rats were then divided and treated orally for 35 days with KH, metformin, clomiphene, KH + metformin, KH+ clomiphene and distilled water. In this study, we observed aberrant AR, ERα, ERβ and PR expression in PCOS-induced rats compared with the normal control rats. The effects of KH treatment were comparable with clomiphene and metformin in normalizing the expression of AR, ERα, and ERβ mRNA. However, KH, clomiphene and metformin did not affect PR mRNA expression and protein distribution. Hence, this study confirms the aberrant expression of sex steroid receptors in PCOS and demonstrates that KH treatment could normalise the sex steroid receptors profile. The findings provide a basis for future clinical trials to utilize KH as a regulator of sex steroid receptors in patients with PCOS.  相似文献   

2.
The androgen receptor (AR) is a steroid hormone receptor widely detected in breast cancer. Evidence suggests that the AR might be a tumor suppressor in estrogen receptor alpha-positive (ERα+ve) breast cancer but a tumor promoter in estrogen receptor alpha-negative (ERα-ve) breast cancer. Modulating AR activity could be a potential strategy for treating breast cancer. For ERα+ve breast cancer, activation of the AR had been demonstrated to suppress the disease. In contrast, for ERα-ve breast cancer, blocking the AR could confer better prognosis to patients. These studies support the feasibility of utilizing AR modulators as anti-cancer drugs for different subtypes of breast cancer patients. Nevertheless, several issues still need to be addressed, such as the lack of standardization in the determination of AR positivity and the presence of AR splice variants. In future, the inclusion of the AR status in the breast cancer report at the time of diagnosis might help improve disease classification and treatment decision, thereby providing additional treatment strategies for breast cancer.  相似文献   

3.
Delta/Serrate/LAG-2 (DSL) proteins, which serve as ligands for Notch receptors, mediate direct cell–cell interactions involved in the determination of cell fate and functioning. The present study aimed to explore the role of androgens and estrogens, and their receptors in the regulation of DSL proteins in Sertoli cells. To this end, primary rat Sertoli cells and TM4 Sertoli cell line were treated with either testosterone or 17β-estradiol and antagonists of their receptors. To confirm the role of particular receptors, knockdown experiments were performed. mRNA and protein expressions of Jagged1 (JAG1), Delta-like1 (DLL1), and Delta-like4 (DLL4) were analyzed using RT-qPCR, Western blot, and immunofluorescence. Testosterone caused downregulation of JAG1 and DLL1 expression, acting through membrane androgen receptor ZRT- and Irt-like protein 9 (ZIP9) or nuclear androgen receptor (AR), respectively. DLL4 was stimulated by testosterone in the manner independent of AR and ZIP9 in Sertoli cells. The expression of all studied DSL proteins was upregulated by 17β-estradiol. Estrogen action on JAG1 and DLL1 was mediated chiefly via estrogen receptor α (ERα), while DLL4 was controlled via estrogen receptor β (ERβ) and membrane G-protein-coupled estrogen receptor (GPER). To summarize, the co-operation of nuclear and membrane receptors for sex steroids controls DSL proteins in Sertoli cells, contributing to balanced Notch signaling activity in seminiferous epithelium.  相似文献   

4.
Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERβ, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERβ in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERβ in male cells and EMT was strongly promoted. An inverse relationship between ERβ expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERβ expressing cell subpopulations and ERβ receptor silencing. Finally, we found that ERβ regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERβ regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.  相似文献   

5.
Estrogen receptor beta (ERβ) plays a critical role in granulosa cell (GC) functions. The existence of four human ERβ splice isoforms in the ovary suggests their differential implication in 17β-estradiol (E2) actions on GC apoptosis causing follicular atresia. In this study, we investigated whether E2 can regulate ERβ isoforms expression to fine tune its apoptotic activities in human GC. For this purpose, we measured by RT-qPCR the expression of ERβ isoforms in primary culture of human granulosa cells (hGCs) collected from patients undergoing in vitro fertilization, before and after E2 exposure. Besides, we assessed the potential role of ERβ isoforms on cell growth and apoptosis after their overexpression in a human GC line (HGrC1 cells). We confirmed that ERβ1, ERβ2, ERβ4, and ERβ5 isoform mRNAs were predominant over that of ERα in hGCs, and found that E2 selectively regulates mRNA levels of ERβ4 and ERβ5 isoforms in these cells. In addition, we demonstrated that overexpression of ERβ1 and ERβ4 in HGrC1 cells increased cell apoptosis by 225% while ERβ5 or ERβ2 had no effect. Altogether, our study revealed that E2 may influence GC fate by specifically regulating the relative abundance of ERβ isoforms mRNA to modulate the balance between pro-apoptotic and non-apoptotic ERβ isoforms.  相似文献   

6.
7.
8.
9.
Breast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression. In particular, androgens, by binding their own receptor, seem to exert a dichotomous effect, as they reduce cell proliferation in estrogen receptor α positive (ERα+) breast cancers while promoting tumour growth in the ERα negative ones. Despite this intricate role in cancer, very little is known about the impact of androgen receptor (AR)-mediated signalling on normal breast tissue and its correlation to breast cancer risk factors. Through an accurate collection of experimental and epidemiological studies, this review aims to elucidate whether androgens might influence the susceptibility for breast cancer. Moreover, the possibility to exploit the AR as a useful marker to predict the disease will be also evaluated.  相似文献   

10.
Hormone receptor expression patterns often correlate with infiltration of specific lymphocytes in tumors. Specifically, the presence of specific tumor-infiltrating lymphocytes (TILs) with particular hormone receptor expression is reportedly associated with breast cancer, however, this has not been revealed in epithelial ovarian cancer (EOC). Therefore, we investigated the association between hormone receptor expression and TILs in EOC. Here we found that ERα, AR, and GR expression increased in EOC, while PR was significantly reduced and ERβ expression showed a reduced trend compared to normal epithelium. Cluster analysis indicated poor disease-free survival (DFS) in AR+/GR+/PR+ subgroup (triple dominant group); while the Cox proportional-hazards model highlighted the triple dominant group as an independent prognostic factor for DFS. In addition, significant upregulation of FoxP3+ TILs, PD-1, and PD-L1 was observed in the triple dominant group compared to other groups. NanoString analyses further suggested that tumor necrosis factor (TNF) and/or NF-κB signaling pathways were activated with significant upregulation of RELA, MAP3K5, TNFAIP3, BCL2L1, RIPK1, TRAF2, PARP1, and AKT1 in the triple dominant EOC group. The triple dominant subgroup correlates with poor prognosis in EOC. Moreover, the TNF and/or NF-κB signaling pathways may be responsible for hormone-mediated inhibition of the immune microenvironment.  相似文献   

11.
12.
13.
14.
15.
Inflammation is important for the initiation and progression of breast cancer. We have previously reported that in monocytes, estrogen regulates TLR4/NFκB-mediated inflammation via the interaction of the Erα isoform ERα36 with GPER1. We therefore investigated whether a similar mechanism is present in breast cancer epithelial cells, and the effect of ERα36 expression on the classic 66 kD ERα isoform (ERα66) functions. We report that estrogen inhibits LPS-induced NFκB activity and the expression of downstream molecules TNFα and IL-6. In the absence of ERα66, ERα36 and GPER1 are both indispensable for this effect. In the presence of ERα66, ERα36 or GPER1 knock-down partially inhibits NFκB-mediated inflammation. In both cases, ERα36 overexpression enhances the inhibitory effect of estrogen on inflammation. We also verify that ERα36 and GPER1 physically interact, especially after LPS treatment, and that GPER1 interacts directly with NFκB. When both ERα66 and ERα36 are expressed, the latter acts as an inhibitor of ERα66 via its binding to estrogen response elements. We also report that the activation of ERα36 leads to the inhibition of breast cancer cell proliferation. Our data support that ERα36 is an inhibitory estrogen receptor that, in collaboration with GPER1, inhibits NFκB-mediated inflammation and ERα66 actions in breast cancer cells.  相似文献   

16.
17.
Estrogen produced by ovarian follicles plays a key role in the central mechanisms controlling reproduction via regulation of gonadotropin-releasing hormone (GnRH) release by its negative and positive feedback actions in female mammals. It has been well accepted that estrogen receptor α (ERα) mediates both estrogen feedback actions, but precise targets had remained as a mystery for decades. Ever since the discovery of kisspeptin neurons as afferent ERα-expressing neurons to govern GnRH neurons, the mechanisms mediating estrogen feedback are gradually being unraveled. The present article overviews the role of kisspeptin neurons in the arcuate nucleus (ARC), which are considered to drive pulsatile GnRH/gonadotropin release and folliculogenesis, in mediating the estrogen negative feedback action, and the role of kisspeptin neurons located in the anteroventral periventricular nucleus-periventricular nucleus (AVPV-PeN), which are thought to drive GnRH/luteinizing hormone (LH) surge and consequent ovulation, in mediating the estrogen positive feedback action. This implication has been confirmed by the studies showing that estrogen-bound ERα down- and up-regulates kisspeptin gene (Kiss1) expression in the ARC and AVPV-PeN kisspeptin neurons, respectively. The article also provides the molecular and epigenetic mechanisms regulating Kiss1 expression in kisspeptin neurons by estrogen. Further, afferent ERα-expressing neurons that may regulate kisspeptin release are discussed.  相似文献   

18.
Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERβ, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERβ (βERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in βERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and βERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERβ regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erβ, differentially regulated gene expression in mammary glands in organ cultures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号