首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twisted oval tube heat exchanger is a type of heat exchanger that aims at improving the heat transfer coefficient of the tube side and also decreasing the pressure drop of the shell side. In the present work, tube side and shell side heat transfer and pressure drop performances of a twisted oval tube heat exchanger has been experimentally studied. The tube side study shows that the tube side heat transfer coefficient and pressure drop in a twisted oval tube are both higher than in a smooth round tube. The shell side study shows that the lower the modified Froude number FrM, the higher the shell side heat transfer coefficient and pressure drop. In order to comparatively analyze its shell side performance of the heat exchanger, a rod baffle heat exchanger with similar size of the twisted oval tube heat exchanger is designed and its performance is calculated with Gentry's method. The comparative study shows that the heat transfer coefficient of the twisted oval tube heat exchanger is higher and the pressure drop is lower than the rod baffle heat exchanger. In order to evaluate the overall performance of the twisted oval tube heat exchanger, a performance evaluation criterion considering both the tube side and shell side performance of a heat exchanger is proposed and applied. The analyze of the overall performance of the twisted oval tube shows that the twisted oval tube heat exchangers works more effective at low tube side flow rate and high shell side flow rate.  相似文献   

2.
This paper details the design, construction and testing of a bayonet tube heat exchanger for use in the process industry and potentially as part of an externally fired combined cycle. Detailed analysis of the system has been undertaken, in particular on the tube side. The data is reported in terms of temperature, pressure, heat gain and heat exchanger effectiveness, over a range of Reynolds numbers and shell side mixture ratios. Much of the heat gained by the tubes is in the annular flow of the bayonet tube. Overall the effectiveness of this system could exceed 70%.  相似文献   

3.
Capillary tube suction line heat exchangers have been modeled using both numerical and analytical approaches. The former requires a reasonable understanding of the governing heat and fluid flow equations, thermodynamic relations, numerical methods, and computer programming, and therefore are not suitable for most refrigeration and air-conditioning practitioners. Alternatively, empirical algebraic formulations for diabatic capillary tube flows have been proposed in the literature, in spite of their lack of generality and accuracy. This paper introduces a physically consistent, unconditionally convergent, easy-to-implement semi-empirical algebraic model for capillary tube suction line heat exchangers, with the same level of accuracy as found with more sophisticated first-principles models. The methodology treats the refrigerant flow and the heat transfer as independent phenomena, thus allowing the derivation of explicit algebraic expressions for the refrigerant mass flow rate and the heat exchanger effectiveness. The thermal and hydraulic models are then conflated through the so-called Buckingham-π theorem using in-house experimental data collected for diabatic capillary tube flows of refrigerants HFC-134a and HC-600a. Comparisons between the model predictions and the experimental data revealed that more than 90% and nearly 100% of all data can be predicted within ±10% and ±15% error bands, respectively.  相似文献   

4.
Ashok K. Satapathy   《Energy》2009,34(9):1122-1126
In this paper the second law analysis of thermodynamic irreversibilities in a coiled tube heat exchanger has been carried out for both laminar and turbulent flow conditions. The expression for the scaled non-dimensional entropy generation rate for such a system is derived in terms of four dimensionless parameters: Prandtl number, heat exchanger duty parameter, Dean number and coil to tube diameter ratio. It has been observed that for a particular value of Prandtl number, Dean number and duty parameter, there exists an optimum diameter ratio where the entropy generation rate is minimum. It is also found that with increase in Dean number or Reynolds number, the optimum value of the diameter ratio decreases for a particular value of Prandtl number and heat exchanger duty parameter.  相似文献   

5.
In this paper, a novel bayonet tube high temperature heat exchanger (HTHE) with inner and outer fins is presented. It can be used in the ultra high temperature environment, such as hydrogen production, very high temperature reactor and externally fired combined cycle. Numerical investigation of heat transfer performance on the inside of bayonet element has been conducted for structure design. The numerical results suggest that the inner fin and inner tube should not be welded together. It is recommended that the air enters from the inner tube and exits from the annular space in the high temperature zone. A high temperature experimental system has been established to test the heat transfer and pressure drop characteristics of the HTHE. The surface area density of the tested HTHE is 6 times higher than that of the bare bayonet tube heat exchanger. The experimental results indicate that the mass flow rate on both sides and inlet temperature on the fuel gas side have a significant effect on the heat transfer rate and effectiveness, while the pressure drop ratios are mainly affected by the mass flow rate rather than the inlet temperature. Comparison between the tested HTHE and the similar HTHE without fins indicates that the proposed HTHE has a significant potential to improve the comprehensive heat transfer performance.  相似文献   

6.
The paper presents numerical investigations of a three fluid heat exchanger (TFHE), which is an improvement on the double pipe heat exchanger, where a helical tube is inserted in the annular space between two straight pipes. The helical tube side fluid, that is, hot water continuously transfers heat to the outer annulus side fluid and innermost tube side fluid. The heat transfer and pressure drop characteristics of the TFHE are assessed for different flow rates and inlet temperatures. With an increment in the volumetric flow rate of the helical tube side fluid and outer annulus side fluid, the overall heat transfer coefficient increases, and the effectiveness decreases for heat transfer from the helical tube side fluid to outer annulus side fluid in both parallel flow and counter flow configurations. It is also observed that with increment in the helical tube side fluid inlet temperature, the overall heat transfer coefficient and effectiveness increases for heat transfer from the helical tube side fluid to outer annulus side fluid in both flow configurations. The parameter, JF factor, has been proposed to evaluate the thermohydraulic behavior of the TFHE, where it is obtained that the behavior of the TFHE is better at a lower helical tube side fluid velocity and higher outer annulus side fluid velocity.  相似文献   

7.
This work considers an optimum design problem for the different constraints involved in the designing of a shell-and-tube heat exchanger consisting of longitudinally finned tubes. A Matlab simulation has been employed using the Kern's method of design of extended surface heat exchanger to determine the behavior on varying the values of the constraints and studying the overall behavior of the heat exchanger with their variation for both cases of triangular and square pitch arrangements, along with the values of pressure drop. It was found out that an optimum fin height existed for particular values of shell and tube diameters when the heat transfer rate was the maximum. Moreover it was found out that the optimum fin height increased linearly with the increase in tube outer diameter. Further studies were also performed with the variation of other important heat exchanger design features and their effects were studied on the behavior of overall performance of the shell-and-tube heat exchanger. The results were thereby summarized which would proclaim to the best performance of the heat exchanger and therefore capable of giving a good idea to the designer about the dimensional characteristics to be used for designing of a particular shell and tube heat exchanger.  相似文献   

8.
Thermal performance criteria of elliptic tube bundle in crossflow   总被引:1,自引:0,他引:1  
In this work, the thermofluid characteristics of the elliptic tube bundle in crossflow have been investigated. Experimental and numerical investigations of the turbulent flow through bundle of elliptic tubes heat exchanger are carried out with a particular reference to the circular tube bundle. The investigation covers the effects of key design parameters of Reynolds numbers (5600–40,000), minor-to-major axis ratios (0.25, 0.33. 0.5 and 1) and flow angles of attack (0–150°). Five bundles of elliptic tube heat exchangers with different axis ratios were designed and manufactured in staggered manner. Numerical CFD modeling using finite volume discretization method was conducted to predict the system performance extensively. Four methods were presented to resort a metric that expresses the thermal performance criteria of the elliptic tube bundle. The results indicated that, increasing the angle of attack clockwise until 90° enhances the convective heat transfer coefficient considerably. The maximum thermal performance under constraint of a fixed pumping power or a mass flow rate was obtained at a zero angle of attack and the minimum thermal performance occurred at an angle of attack equals 90°. The best thermal performance of the elliptic tube heat exchanger was qualified with the lower values of Reynolds number, axis ratio and angle of attack.  相似文献   

9.
Detailed transient numerical simulations of fluid and heat flow were performed for a number of heat exchanger segments with cylindrical, ellipsoidal and wing-shaped tubes in a staggered arrangement. The purpose of the analysis was to get an insight of local heat transfer and fluid flow conditions in a heat exchanger and to establish widely applicable drag coefficient and Stanton number correlations for the heat exchanger integral model, based on average flow variables. The simulation results revealed much more complex flow behavior than reported in current literature. For each of the almost 100 analyzed cases, the time distributions of the Reynolds number, the drag coefficient and the Stanton number were recorded, and their average values calculated. Based on these average values, the drag coefficient and the Stanton number correlations were constructed as polynomial functions of the Reynolds number and the hydraulic diameter. The comparison of the collected results also allows more general conclusions on efficiency and stability of the heat transfer process in tube bundles.  相似文献   

10.
In the present study, the average tube-side and air-side heat transfer coefficients in a spirally coiled finned tube heat exchanger under dry- and wet-surface conditions are experimentally investigated. The test section is a spiral-coil heat exchanger, which consists of six layers of concentric spirally coiled tube. Each tube is fabricated by bending a 9.6-mm outside diameter straight copper tube into a spiral coil of four turns. Aluminium fins with thickness 0.6 mm and outside diameter 28.4 mm are placed helically around the tube. The chilled water and the hot air are used as working fluids. The test runs are done at the air and water mass flow rates ranging between 0.02 and 0.2 kg/s and between 0.04 and 0.25 kg/s, respectively. The inlet-air and -water temperatures are between 35 and 60 °C and between 10 and 35 °C, respectively. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. New correlations based on the data gathered during this work for predicting the tube-side and air-side heat transfer coefficients for the spirally coiled finned tube heat exchanger are proposed.  相似文献   

11.
A preliminary model for estimating possible thermal energy storage in a phase change shell and tube heat exchanger is presented. Effect of various parameters such as thermal and physical properties of PCM and convective fluid, heat exchanger dimensions and heat transfer fluid flow rates both in laminar and turbulent regime on energy storage times are discussed. The model is illustrated for specific cases.  相似文献   

12.
Experimental data have been generated for a single-circuit, multi-pass finned tube heat exchanger representative of an element of a typical packaged air conditioning unit evaporator. The data have been used to validate a cross flow heat exchanger computer program (ACOL5), developed originally for large scale steam plant, for air conditioning applications. The tests were conducted for a wide range of spatially uniform air flow conditions on to the coil, together with a variety of R22 refrigerant entry dryness fractions. The correspondence between the predicted and experimental heat transfer performance was good, thus suggesting that the program could be used with a degree of confidence in the design of air conditioning and refrigerant equipment. A particular application is that of prediction of the effects of maldistribution of air flow through heat exchangers, a common cause of loss of efficiency in air conditioning and refrigeration units; this topic is addressed in a companion paper.  相似文献   

13.
Design criteria for tube bundle heat exchangers, to avoid fluidelastic instability, are based on stability criteria for ideal bundles and uniform flow conditions along the tube length. In real heat exchangers, a non-uniform flow distribution is caused by inlet nozzles, impingement plates, baffles and bypass gaps. The calculation of the equivalent velocities, according to the extended stability equation of Connors, requires the knowledge of the mode shape and the assumption of a realistic velocity distribution in each flow section of the heat exchanger. It is the object of this investigation to derive simple correlations and recommendations, (1) for equivalent velocity distributions, based on partial constant velocities, and (2) for the calculation of the critical volume flow in practical design applications. With computational fluid dynamic (CFD) programs it is possible to calculate the velocity distribution in real tube bundles, and to determine the most endangered tube and thereby the critical volume flow. The paper moreover presents results and design equations for the inlet section of heat exchangers with variations of a broad range of geometrical parameters, e.g., tube pitch, shell diameter, nozzle diameter, span width, distance between nozzle exit and tube bundle.  相似文献   

14.
In order to improve the performance of an evacuated solar tube heat exchanger, which works by the evaporation–condensation cycle of the working fluid, the flow and heat transfer characteristics of the exchanger employing the Galerkin finite-element method has been analysed in this paper. It is found that the heat extraction rate of the absorber is governed by the flowrate – specific heat capacity product of the working fluid, the tube dimensions and the absorptive coating.  相似文献   

15.
Three-dimensional simulations of four louver-tube junction geometries are performed to investigate the effect on louver and tube friction and heat transfer characteristics. Three Reynolds numbers, 300, 600 and 1100, based on bulk velocity and louver pitch are calculated. Strong three-dimensionality exists in the flow structure in the region where the angled louver transitions to a flat landing adjoining the tube surface, whereas the flow on the angled louver far from the tube surface is nominally two-dimensional. Due to the small spatial extent of the transition region, its overall impact on louver heat transfer is limited, but the strong unsteady flow acceleration on the top louver surface augments the heat transfer coefficient on the tube surface by over 100%. In spite of the augmentation, the presence of the tube lowers the overall Nusselt number of the heat exchanger between 25% and 30%. Comparisons with correlations derived from experiments on full heat exchanger cores show that computational modeling of a small subsystem can be used reliably to extract performance data for the full heat exchanger.  相似文献   

16.
ABSTRACT

Conjugate heat transfer to supercritical CO2 in membrane helical coiled tube heat exchangers has been numerically investigated in the present study. The purpose is to provide detailed information on the conjugate heat transfer behavior for a better understanding of the abnormal heat transfer mechanism of supercritical fluid. It could be concluded that the supercritical fluid mass flux and vertical/horizontal placement would significantly affect the abnormal heat transfer phenomenon in the tube side. The flow field of supercritical fluid is affected by both the buoyancy and centrifugal force in the conjugate heat transfer process. The local wall temperature and heat transfer coefficient in the tube side would rise and fall periodically for the horizontal heat exchanger, but this phenomenon will gradually disappear with the increase of the mass flow rate or fluid temperature in the tube side. The dual effects of buoyancy force and centrifugal force lead to the deflection of the second flow direction for the vertical placement, which further results in the heat transfer deterioration region on the top-generatrix wall for the downward flow being larger than that for the upward flow.  相似文献   

17.
The peripheral-finned tube is a new geometry aimed at avoiding moisture-condensate blockage hindering of the air-side heat transfer, by allowing for robust air flow pathways. It consists of a porous structure formed by periodic, radial-hexagonal fin arrangements of different radial extents mounted with a 30° offset from its neighboring level. Here, the air-side pressure drop and the heat transfer characteristics of five different heat exchanger prototypes with different geometric characteristics, such as the radial fin length, fin distribution, and heat exchanger length, were evaluated experimentally in an open-loop wind-tunnel calorimeter. The results demonstrate the effective performance, i.e., the pressure drop and heat transfer characteristics, of this new heat exchanger. A one-dimensional theoretical model based on the porous media treatment was also developed to predict the thermal-hydraulic behavior of the heat exchanger. The model incorporates the actual fin geometry into the calculation of the air-side porosity. The air-side permeability is calculated according to the Kozeny–Carman model and the particle-diameter based analysis. The model predicts the experimental data within a few percent RMS, depending on the correlations used for the friction coefficient and interstitial Nusselt number.  相似文献   

18.
In this paper, the new approach of constructal theory has been employed to design shell and tube heat exchangers. Constructal theory is a new method for optimal design in engineering applications. The purpose of this paper is optimization of shell and tube heat exchangers by reduction of total cost of the exchanger using the constructal theory. The total cost of the heat exchanger is the sum of operational costs and capital costs. The overall heat transfer coefficient of the shell and tube heat exchanger is increased by the use of constructal theory. Therefore, the capital cost required for making the heat transfer surface is reduced. Moreover, the operational energy costs involving pumping in order to overcome frictional pressure loss are minimized in this method. Genetic algorithm is used to optimize the objective function which is a mathematical model for the cost of the shell and tube heat exchanger and is based on constructal theory. The results of this research represent more than 50% reduction in costs of the heat exchanger.  相似文献   

19.
This paper presents a transient analysis of a solar water heating system with forced circulation. Two modes of hot water retrieval have been taken into account viz direct from the tank and through a heat exchanger placed in the tank. Analysis has been presented both for constant flow and constant collection temperature modes. Effects of heat exchanger length and time of starting hot water retrieval on the system performance have also been studied. Numerical calculations have been made for a typical cold day (26 January, 1980) at Delhi.  相似文献   

20.
Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of a four-row plain fin-and-tube heat exchanger using the Commercial Computational Fluid Dynamics Code ANSYS CFX 12.0. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 400 to 2000. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models (k-ω) with steady and incompressible fluid flow. Model validation is carried out by comparing the simulated case friction factor (f) and Colburn factor (j) with the experimental data of Wang et al. [1]. Reasonable agreement is found between the simulations and experimental data. In this study the effect of geometrical parameters such as fin pitch, longitudinal pitch and transverse pitch of tube spacing are studied. Results are presented in the form of friction factor (f) and Colburn factor (j). For both laminar and transitional flow conditions heat transfer and friction factor decrease with the increase of longitudinal and transverse pitches of tube spacing whereas they increase with fin pitches for both in-line and staggered configurations. Efficiency index increases with the increase of longitudinal and transverse pitches of tube spacing but decreases with increase of fin pitches. For a particular Reynolds number, the efficiency index is higher in in-line arrangement than the staggered case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号