首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
The foundation of precision immunotherapy in oncology is rooted in computational biology and patient-derived sample sequencing to enrich for and target immunogenic epitopes. Discovery of these tumor-specific epitopes through tumor sequencing has revolutionized patient outcomes in many types of cancers that were previously untreatable. However, these therapeutic successes are far from universal, especially with cancers that carry high intratumoral heterogeneity such as glioblastoma (GBM). Herein, we present the technical aspects of Mannan-BAM, TLR Ligands, Anti-CD40 Antibody (MBTA) vaccine immunotherapy, an investigational therapeutic that potentially circumvents the need for in silico tumor-neoantigen enrichment. We then review the most promising GBM vaccination strategies to contextualize the MBTA vaccine. By reviewing current evidence using translational tumor models supporting MBTA vaccination, we evaluate the underlying principles that validate its clinical applicability. Finally, we showcase the translational potential of MBTA vaccination as a potential immunotherapy in GBM, along with established surgical and immunologic cancer treatment paradigms.  相似文献   

2.
The understanding of the tumor microenvironment (TME) has been expanding in recent years in the context of interactions among different cell types, through direct cell–cell communication as well as through soluble factors. It has become evident that the development of a successful antitumor response depends on several TME factors. In this context, the number, type, and subsets of immune cells, as well as the functionality, memory, and exhaustion state of leukocytes are key factors of the TME. Both the presence and functionality of immune cells, in particular T cells, are regulated by cellular and soluble factors of the TME. In this regard, one fundamental reason for failure of antitumor responses is hijacked immune cells, which contribute to the immunosuppressive TME in multiple ways. Specifically, reactive oxygen species (ROS), metabolites, and anti-inflammatory cytokines have central roles in generating an immunosuppressive TME. In this review, we focused on recent developments in the immune cell constituents of the TME, and the micromilieu control of antitumor responses. Furthermore, we highlighted the current challenges of T cell-based immunotherapies and potential future strategies to consider for strengthening their effectiveness.  相似文献   

3.
The prototypic sensors for the induction of innate and adaptive immune responses are the Toll-like receptors (TLRs). Unusually high expression of TLRs in prostate carcinoma (PC), associated with less differentiated, more aggressive and more propagating forms of PC, changed the previous paradigm about the role of TLRs strictly in immune defense system. Our data reveal an entirely novel role of nucleic acids-sensing Toll-like receptors (NA-TLRs) in functional adaptation of malignant cells for supply and digestion of surrounding metabolic substrates from dead cells as specific mechanism of cancer cells survival, by corresponding ligands accelerated degradation and purine/pyrimidine salvage pathway. The spectrophotometric measurement protocols used for the determination of the activity of RNases and DNase II have been optimized in our laboratory as well as the enzyme-linked immunosorbent method for the determination of NF-κB p65 in prostate tissue samples. The protocols used to determine Dicer RNase, AGO2, TARBP2 and PIWIL4 were based on enzyme-linked immunosorbent assay. The amount of pre-existing acid-soluble oligonucleotides was measured and expressed as coefficient of absorbance. The activities of acid DNase II and RNase T2, and the activities of nucleases cleaving TLR3, TLR7/8 and TLR9 ligands (Poly I:C, poly U and unmethylated CpG), increased several times in PC, compared to the corresponding tumor adjacent and control tissue, exerting very high sensitivity and specificity of above 90%. Consequently higher levels of hypoxanthine and NF-κB p65 were reported in PC, whereas the opposite results were observed for miRNA biogenesis enzyme (Dicer RNase), miRNA processing protein (TARB2), miRNA-induced silencing complex protein (Argonaute-AGO) and PIWI-interacting RNAs silence transposon. Considering the crucial role of purine and pyrimidine nucleotides as energy carriers, subunits of nucleic acids and nucleotide cofactors, future explorations will be aimed to design novel anti-cancer immune strategies based on a specific acid endolysosomal nuclease inhibition.  相似文献   

4.
Novel 1,8-naphthyridine-2-carboxamide derivatives with various substituents (HSR2101-HSR2113) were synthesized and evaluated for their effects on the production of pro-inflammatory mediators and cell migration in lipopolysaccharide (LPS)-treated BV2 microglial cells. Among the tested compounds, HSR2104 exhibited the most potent inhibitory effects on the LPS-stimulated production of inflammatory mediators, including nitric oxide (NO), tumor necrosis factor-α, and interleukin-6. Therefore, this compound was chosen for further investigation. We found that HSR2104 attenuated levels of inducible NO synthase and cyclooxygenase 2 in LPS-treated BV2 cells. In addition, it markedly suppressed LPS-induced cell migration as well as the generation of intracellular reactive oxygen species (ROS). Moreover, HSR2104 abated the LPS-triggered nuclear translocation of nuclear factor-κB (NF-κB) through inhibition of inhibitor kappa Bα phosphorylation. Furthermore, it reduced the expressions of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) in LPS-treated BV2 cells. Similar results were observed with TAK242, a specific inhibitor of TLR4, suggesting that TLR4 is an upstream regulator of NF-κB signaling in BV2 cells. Collectively, our findings demonstrate that HSR2104 exhibits anti-inflammatory and anti-migratory activities in LPS-treated BV2 cells via the suppression of ROS and TLR4/MyD88/NF-κB signaling pathway. Based on our observations, HSR2104 may have a beneficial impact on inflammatory responses and microglial cell migration involved in the pathogenesis of various neurodegenerative disorders.  相似文献   

5.
Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.  相似文献   

6.
7.
8.
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1–0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号