首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many kinds of additives are generally added to engine lubricants to improve performance. These chemical additives are harmful to both humans and the environment. For this reason, the research trend in the lubricant industry is to reduce the use of chemical additives in engine oils. Carbon materials like nanodiamonds are candidates among many physical additives. Nanodiamond particles are round, very hard, chemically stable, and highly heat conductible. In this research, nanodiamond particles were uniformly dispersed in marine engine lubricants. A matrix synthesis method was used for dispersion with various concentrations. Friction and wear tests were performed to measure the friction and wear amounts, and scuffing tests were performed. The friction coefficients were decreased with the addition of nanodiamond particles. Due to their octagonal and almost spherical shape, the particles could act as rolling contact elements between two lubricated sliding surfaces. In addition, it was found that there was a proper concentration of nanodiamond to minimize the wear amounts, which was 0.3 wt%. From the scanning electron microscopy (SEM) analysis many agglomerated particles were found on the sliding surfaces with a high concentration of particles over 0.3%. The excessive amount of nanodiamonds acted as abrasive debris and ploughed the contact surfaces. Finally, as the concentration of nanodiamonds increased, the scuffing life increased due to a reduction in friction, and the rate of temperature increase was reduced due to the high heat conductivity of nanodiamonds.  相似文献   

2.
A model of scuffing is developed based on the premise that metallic surfaces can catalyze degradation of the lubricant film in situ. A failure mechanism for elastohydrodynamic films based on rapid decomposition of mineral and synthetic oils involving chemical reaction between entrapped oil and the containing surfaces is proposed. It is suggested that this destruction of the elastohydrodynamic oil film allows adhesion between nascent metal of opposing surfaces in the contact which in turn causes scuffing. Suppression of scuffing by the application of coatings that do not catalyze the oil decomposition and by the action of some lubricant additives which may block the catalytic effect of metallic surfaces is discussed. Effect of solid lubricant films and contaminant layers on scuffing is also described.  相似文献   

3.
This paper describes an investigation of lubricating oils under extreme-pressure (EP) conditions in a specially modified four-ball tester. A new test method developed at the Tribology Department of ITeE described in Part I of this paper was used. In this, during a test run, the applied load is increased continuously and the friction torque is measured. A sudden increase in the friction torque indicates the collapse of the lubricating film — where scuffing is initiated. The load at this moment is called the scuffing load. If the load is increased further, it is possible to observe scuffing propagation until seizure occurs, i.e., a defined, maximum friction torque is reached. Thus, scuffing is considered as a process leading to seizure. Using the method, tribological experiments were performed employing various lubricating oils consisting of viscosity-index improvers and antiwear (AW) and extreme-pressure (EP) additives added to a base oil. Mineral and synthetic base oils of different kinematic viscosities were used. The aim was to investigate the influence of such lubricants on scuffing initiation and propagation with the present methodology. In Part I it was shown that scuffing initiation depends strongly on the kinematic viscosity of the lubricant; the higher the viscosity, the greater the scuffing load. The presence of AW and EP additives in the lubricant increases the scuffing load significantly. It was also shown that the kinematic viscosity of the lubricant oils has no effect on scuffing propagation. However, scuffing propagation is significantly mitigated by AW and, to a greater extent, by EP additives. The results of surface analyses show the decisive nature of the chemical reactions of AW and EP additives with the steel ball surface under scuffing conditions, as well as the possible diffusion of sulphur and phosphorus. Chemical reactions and diffusion lead to the creation of an inorganic surface layer (probably iron sulphide), the good anti-seizure properties of which limit scuffing propagation.  相似文献   

4.
The temperature of surface asperities affects lubricant‐surface tribochemical interactions. It is important to know the nature of this to identify ways of preventing scuffing and seizure under extreme‐pressure (EP) conditions. A new model for the determination of the temperature of contacting asperities is presented in this paper. It assumes the superposition of thermal processes occurring on the macroscale and thermal phenomena in the contact of asperity tips (microscale). Numerical results have been obtained for conditions of four‐ball testing of various lubricating oils — a mineral base oil with and without antiwear and EP additives. To calculate the scuffing and seizure temperatures, knowledge of the mechanical and physical properties of the test ball material (bearing steel) and lubricants, as well as the parameters describing the surface topography of the balls, was necessary. Friction coefficient curves were also needed; they were determined during four‐ball tests with a continuously increasing load. For the base oil with lubricating additives, the temperature of contacting surface asperities at the moment of scuffing initiation was calculated to be about 230°C and increased to over 1000°C at the highest loading of the four‐ball tribosystem. This suggests the possibility of tribochemical reactions of the lubricating additives with the steel surface, and diffusion of some elements, a modified surface layer having good antiseizure properties being produced. Such a layer prevents seizure of the tribosystem. For the base oil without lubricating additives, scuffing initiated at about 150°C and the temperature exceeded 1200°C at seizure. The temperature values obtained agree with results in the literature.  相似文献   

5.
纳米硼酸镧添加剂的摩擦学性能研究   总被引:5,自引:0,他引:5  
通过对含纳米硼酸镧粒子添加剂润滑油的摩擦学性能试验研究 ,发现纳米硼酸镧添加剂能改善滑动摩擦副的摩擦学性能、抗胶合能力及润滑油的润滑性能 ,分析滑动摩擦副胶合失效后的表面形貌 ,结合失效后滑动摩擦副表面 XPS图谱 ,发现这是由于这种添加剂能在摩擦副表面形成吸附膜及聚合物膜 ,且摩擦副表面有渗硼层出现所致  相似文献   

6.
G. Bollani 《Wear》1976,36(1):19-23
The scuffing behaviour of sliding couples made from 12 NiCr 13 steel, lubricated with SAE 90 and SAE 20 W30 oils with and without additives, was studied as a function of relative sliding speed and bulk oil temperature. It was found that the scuffing load decreases almost inversely with sliding speed. Calculations which take into account the decrease in hardness at increasing temperature show a fairly good constancy of total contact temperature (bulk + flash temperature) at scuffing (i.e. values ranging from 550 ° to 650 °C for all oils and test conditions). At low speeds (up to 1 m s?1) a well-defined increase in scuffing load was found when EP additives were used; at higher speeds this effect was found to have vanished completely. Variations in nominal contact pressure in the range 1 to 3 had no appreciable influence on the scuffing load, indicating that, in the present case, scuffing was associated with a transition from the boundary lubrication regime to the severe wear regime.  相似文献   

7.
A temperature analysis of dry sliding fully plastic contact is extended to calculate the asperity temperatures between a sliding lubricated rigid smooth plane and a stationary elastic rough surface. First, surface roughness is generated numerically to have a Gaussian height distribution and a bilinear autocorrelation function. Lai and Cheng's elastic rough contact computer program is then used to determine the asperity contact loads and geometries of real contact areas. Assuming different frictional coefficients for shearing the lubricant film at the noncontact areas, shearing the surface film at the asperity contacts and shearing the oxide film as the asperity temperature exceeds a critical temperature, asperity temperature distributions can be calculated. Eight cases in Durkee and Cheng's scuffing tests of lubricated simple sliding rough contacts are simulated by using 20 computer-generated rough surfaces. The results show that scuffing is correlated to high-temperature asperities which are above the material-softening temperature.  相似文献   

8.
The lubrication of sliding components in vacuum conditions offers unique challenges. High vacuum precludes the use of many conventional liquid lubricants because of vaporisation, while the lack of a naturally-occurring oxide film on metal surfaces may cause instant seizure following the failure of a lubricant. Solid lubricants, such as molybdenum disulphide and tungsten disulphide, are also used, but are less effective than more complex liquid lubrication mechanisms. New surface treatment processes, such as diamond-like carbon (DLC), are becoming available and may further reduce wear. The purpose of the present paper is to describe an apparatus that can evaluate solid lubricants under a wide range of contact conditions at vacua down to 3 × 10−7 Torr. The wear test stage is mounted in the chamber of a Scanning Electron Microscope (SEM), which allows real-time high magnification photography of the contact area. The complete stage may be moved in three planes to facilitate observation of the complete contact area. Realtime measurement of applied load and friction coefficient is also provided.  相似文献   

9.
The concept of the metallic surfaces polarity in the context of scuffing performance is postulated and elucidated in the presented paper. The machining by grinding and surface treatment by burnishing is applied to control introducing changes in surface polarity and acid/base component of surface free energy is used for their quantitative determination. A clear relationship between the acid/base component of surface free energy and an activation of scuffing for the steel–cast iron friction pairs lubricated by oils with the surface-active sulphur-based additives is found. Obtained results are commented and clarified; thanks to the negative-ion concept of extreme pressure action of organo-sulphur compounds. Additionally, surface reactivity investigations are performed in order to determine the influence of acid/base component of surface free energy on the corrosion wear. It recognised a clear relationship between the acid/base component of surface free energy and the mass decrement of steel surfaces in the hydrochloric acid environment. On the basis of both parts of the investigations (scuffing and reactivity tests), an optimal surface polarity is determined for steel–cast iron friction pairs lubricated by lubricants with surface-active sulphur-based additives.  相似文献   

10.
有机硼酸酯添加剂对摩擦副抗咬死性能影响研究   总被引:2,自引:1,他引:2  
通过对稀土金属硼系列有机硼酸酯(C9H21BO3)添加剂的润滑性能抗咬死性能试验研究,发现有机硼酸酯添加剂能显著改善滑动摩擦副的抗咬死性能及润滑油的润滑性能,通过分析磨斑表面X射线衍射图谱(XPS),发现该种添加剂作用下,摩擦副表面形成了聚合物膜,使得摩擦力减小了,随着载荷的增大,添加剂在摩擦热产生的高温作用下,部分原子如C、B同表面金属发生化学反应,生成了FeC,B2O3,H3BO3等物质。结合  相似文献   

11.
This paper describes a method for the determination of scuffing propagation using a four‐ball extreme‐pressure tester. The method has been developed at the authors' laboratory and is a completely new approach to the investigation of scuffing phenomena. A series of lubricants was prepared by blending antiwear (AW) and extreme‐pressure (EP) additives with a mineral base oil. Tribological experiments were then performed using the new method. The aim was to investigate the influence of such additives on scuffing propagation. It is shown that there is a significant influence of AW and EP additives on scuffing. Surface analyses (SEM, EDS) show the decisive role of the chemical reactions of AW and EP additives with the steel surface and their creation of a surface layer whose good antiseizure properties mitigate scuffing propagation and reduce wear intensity. It must be emphasised that the authors consider scuffing to be a process leading to the cessation of the relative movement of a tribosystem, known as seizure.  相似文献   

12.
The paper presents thermodynamic and kinetic analyses of probable chemical reactions and adsorption processes depending on their energy, temperature, and pressure. It is shown that only lubricating adsorption films that appear on the rubbing surfaces due to mechanoactivated reactions can play a significant role in improving the tribological properties of a sliding contact. It is also demonstrated that heavy pressures in the zone of real contact between the asperities of rubbing surfaces enhance equilibrium adsorption of low-molecular-weight additives and of a number of high-molecular-weight additives to fluid lubricants.  相似文献   

13.
This paper summarizes the results of scuffing tests performed on AMS 6260 steel disks, covering three oils (a MIL-L-7808G oil, a MIL-L-23699A oil, and a straight mineral oil), two oil supply temperatures, a variety of sliding and sum velocities, and two modes of operating the test disks such that the potential failure sites on the disk surfaces either do or do not synchronize precisely in repeated cycles of operation. It is shown that, under otherwise comparable situations, (a) different oil-steel combinations allow the operation to penetrate by different degrees into the boundary lubrication regime before scuffing occurs, (b) an increase in the sliding velocity, at constant sum velocity, decreases the scuff failure load and the critical temperature, (c) an increase in the sum velocity, at constant sliding velocity, increases the scuff failure load and the critical temperature, (d) the effect of changing the sliding velocity or sum velocity, at a constant sliding-to-sum velocity ratio, depends on the balance of the opposing effects of sliding ans sum velocities at the particualar velocity ratio of interest, and (e) the scuff failure load and the critical temperature are markedly increased when the potential failure sites on the disk surfaces do not precisely synchronize on repeated cycles of operation.It is further demonstrated that the variations of the oil film thickness at scuffing, the coefficient of friction at scuffing, and the critical temperature with respect to all surface and operating variables correlate satisfactorily with a dimensionless parameter ξf.  相似文献   

14.
在油润滑条件下,钢对钢摩擦副的胶合摩损不仅取决于润滑油膜是否破裂,而且取决于在摩擦表面上化学反应膜的形成情况。本文研究了在油润滑条件下滑动速度对钢摩擦副胶合的影响。在低滑动速度下摩擦表面易于形成反应膜,油膜破裂后并不直接发生胶合。胶合发生在高温、高摩擦系数的恶劣条件下。在高滑动速度下油膜破裂后很容易发生胶合,发生胶合前的表面温度和摩擦系数都比较低。  相似文献   

15.
Tribochemistry, the chemistry of interacting surfaces under the influence of a lubricant, helps in the appropriate selection of suitable lubricant additives for specific uses. Modern lubricants are usually formulated from a range of petroleum base oils or synthetic fluids incorporating a variety of chemical additives for performance enhancement. Extreme‐pressure (EP) and anti‐wear (AW) additives are used extensively in lubricants for hypoid gears and metal cutting and forming operations to reduce wear, modify friction, and prevent scuffing of moving metallic parts. The present paper includes the synthesis and the evaluation of the tribological properties of 0.5% (w/v) solutions of some zinc bis‐(alkyl/dialkyl/alkylaryldithiocarbamates) in paraffin oil using 12.7 mm diameter steel bearing ball specimens in four‐ball tests. All the synthesised zinc dithiocarbamate additives in general, and zinc bis‐(morpholinodithio‐carbamate) (A4) in particular, exhibited good AW, EP, and friction‐reducing properties. Additive A4 especially gave low values of wear‐scar diameter and coefficient of friction at higher loads and higher values of load wear index and flash temperature parameter during EP tests (ASTM D 2783) and afforded lower values of wear‐scar diameter in a one‐hour wear test (ASTM D 2266–67). The surface topography of the wear‐scar matrix of the used ball specimens was investigated by scanning electron microscopy.  相似文献   

16.
It has already been known for many years that the use of some extreme-pressure (EP), antiwear or friction modifier (FM) additives in mineral oils can produce different kind of boundary or chemical reaction films on sliding contact surfaces of some kinds of steel in boundary lubrication conditions. Using a sliding ball-on-disc configuration lubricated with some kinds of EP or FM, the wear scars on the balls can always reach the same limit size at a specified applied load and sliding velocity. From the fact that the limit sizes of wear scars decrease as sliding speed is increased or applied load is decreased, the load carrying ability of a chemical film can be obtained by extrapolating the data to the condition of zero sliding speed and is so defined that if the contact pressure is greater than this load carrying ability, the contact surfaces will continuously be worn; if the contact pressure is smaller than it, no more wear will occur on the surfaces. Based on this load carrying ability, the hydrodynamic effect of sliding pairs can also be identified. Therefore, the limit size of wear scar at specified sliding speed and applied load can also be predicted in a mixed lubrication condition.  相似文献   

17.
Deterioration of gears occurs by abrasive wear, pitting (surface fatigue) or severe adhesive wear (scuffing). The effects of the latter mode may be mitigated by the use of extreme pressure (EP) additives but these sometimes accentuate the risk of pitting-type failure. Accordingly, EP lubricants are not recommended for industrial gearing. The introduction of elastohydrodynamic lubrication theory has demonstrated that it is possible to operate gears without physical contact between the interacting tooth faces. Under conditions of pure rolling (at the pitch point) there is good agreement between theory and experiment, but when relative sliding occurs the measured film thickness is lower than calculated. A recently derived theory, taking into account the effect of the heating arising from relative sliding on the hydrodynamic film thickness, has been applied to a set of industrial gears, from which it is deduced that the effect on load-carrying capacity of the gear is not serious. The theory has also been applied to some results obtained on the Institution of Automobile Engineers lubricant-testing machine.  相似文献   

18.
This paper presents the results of a disc machine gear simulation investigating the influence of lubricant traction characteristics and formulation on the load at which scuffing occurs. Scuffing theories in general link the onset of scuffing to the amount of heat generated in the contact and the authors hypothesized that reduced heat generation with low traction lubricants should lead to an increase in scuffing load. The study compared low traction PAO-based lubricants with mineral oils in basestock, antiwear and EP formulations and at both high (>6) and moderate (approximately 1.2) specific film thickness, λ. At λ > 6, the benefits of the synthetics over their mineral counterparts ranged from 25 percent to 220 percent and at λ ? 1.2, the benefits were a uniform 40 percent. It was particularly interesting to observe that the antiwear PAO-based oil gave a similar scuff load per unit contact width to an EP mineral gear oil. In addition, it was shown that scuffing load decreased with increasing traction coefficient to the power of approximately ? 1.85, close to the ?2.00 power predicted by the frictional power intensity concept. The agreement with flash temperature theory, with a predicted power of ?1.33, was less close.  相似文献   

19.
A two-dimensional thermomechanical finite element model was developed to analyze the sliding process of a piston ring with coating sliding on cylinder liner under dry running condition. Thermal and mechanical effects were considered simultaneously in the model. The aim of the current work is to study the mechanisms of scuffing, failure, and seizure occurrence in a piston ring-liner system. It is shown that coating thickness plays an important role in the thermal and mechanical stress status at the contact area, coating bulk body, and interface of the coating and piston ring substrate. The coating thickness also exhibits a significant influence on the temperature rising at the contact area and interface of the ring coating and substrate, which could cause failure at the interface of the coating and substrate before it happens at the contact surface under some specific conditions. The results also show that thinner coating thickness in some specific range could have a higher possibility of cracking or failure. Furthermore, it is found that the thermal loading is the key cause of scuffing or failure of the piston ring coating.  相似文献   

20.
A study was made of surface roughness effects on metallic contact and friction in the transition zone between hydrodynamic and boundary lubrication. The system used was one of pure sliding and relatively high contact stress, namely a fixed steel ball riding on a rotating steel cylinder.

It was found that very smooth and very rough surfaces gave less metallic contact than surfaces of intermediate roughness; very smooth surfaces also gave less friction.

Four different types of antiwear/antifriction additives (including tricresyl phosphate) were studied and although they were found to reduce metallic contact and friction, they had little effect in reducing surface roughness. Rather, the additives merely slowed down the wearing-in process of the base oil. Thus, the “chemical polishing” mechanism advanced for the antiwear behavior of tricresyl phosphate appears to be incorrect.

With rough surfaces, the improvement in load-carrying capacity with increasing viscosity was less than that shown previously with smooth surfaces. Also, oils with a large pressure-viscosity coefficient did not show the expected beneficial effect with rougher surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号