首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been used in various biomedical fields. UV light is commonly used to photocrosslink such materials; however, its use has raised several biosafety concerns. We investigated the mechanical and biological properties of a visible-wavelength (VW)-light-crosslinked gelatin-based hydrogel to evaluate its viability as a scaffold for bone regeneration in bone-destructive disease treatment. Irgacure2959 or riboflavin was added as a photoinitiator to create GelMA solutions. GelMA solutions were poured into a mold and exposed to either UV or VW light. KUSA-A1 cell-laden GelMA hydrogels were crosslinked and then cultured. Mechanical characterization revealed that the stiffness range of GelMA–RF hydrogel was suitable for osteoblast differentiation. KUSA-A1 cells encapsulated in GelMA hydrogels photopolymerized with VW light displayed significantly higher cell viability than cells encapsulated in hydrogels photopolymerized with UV light. We also show that the expression of osteogenesis-related genes at a late stage of osteoblast differentiation in osteoblasts encapsulated in GelMA–RF hydrogel was markedly increased under osteoblast differentiation-inducing conditions. The GelMA–RF hydrogel served as an excellent scaffold for the encapsulation of osteoblasts. GelMA–RF hydrogel-encapsulated osteoblasts have the potential not only to help regenerate bone mass but also to treat complex bone defects associated with bone-destructive diseases such as periodontitis.  相似文献   

2.
Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.  相似文献   

3.
Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs–PEG–cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs–PEG–cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.  相似文献   

4.
The extracellular matrix provides mechanical cues to cells within it, not just in terms of stiffness (elasticity) but also time-dependent responses to deformation (viscoelasticity). In this work, we determined the viscoelastic transformation of gelatine methacryloyl (GelMA) hydrogels caused by adipose tissue-derived stromal cells (ASCs) through mathematical modelling. GelMA-ASCs combination is of interest to model stem cell-driven repair and to understand cell-biomaterial interactions in 3D environments. Immortalised human ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels and evaluated for 14 d. GelMA had a concentration-dependent increase in stiffness, but cells decreased this stiffness over time, across concentrations. Viscoelastic changes in terms of stress relaxation increased progressively in 5% GelMA, while mathematical Maxwell analysis showed that the relative importance (Ri) of the fastest Maxwell elements increased proportionally. The 10% GelMA only showed differences at 7 d. In contrast, ASCs in 15% GelMA caused slower stress relaxation, increasing the Ri of the slowest Maxwell element. We conclude that GelMA concentration influenced the stiffness and number of Maxwell elements. ASCs changed the percentage stress relaxation and Ri of Maxwell elements transforming hydrogel viscoelasticity into a more fluid environment over time. Overall, 5% GelMA induced the most favourable ASC response.  相似文献   

5.
Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups—a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.  相似文献   

6.
Hyaluronic acid (HA) and gelatin (Gel) are major components of the extracellular matrix of different tissues, and thus are largely appealing for the construction of hybrid hydrogels to combine the favorable characteristics of each biopolymer, such as the gel adhesiveness of Gel and the better mechanical strength of HA, respectively. However, despite previous studies conducted so far, the relationship between composition and scaffold structure and physico-chemical properties has not been completely and systematically established. In this work, pure and hybrid hydrogels of methacroyl-modified HA (HAMA) and Gel (GelMA) were prepared by UV photopolymerization and an extensive characterization was done to elucidate such correlations. Methacrylation degrees of ca. 40% and 11% for GelMA and HAMA, respectively, were obtained, which allows to improve the hydrogels’ mechanical properties. Hybrid GelMA/HAMA hydrogels were stiffer, with elastic modulus up to ca. 30 kPa, and porous (up to 91%) compared with pure GelMA ones at similar GelMA concentrations thanks to the interaction between HAMA and GelMA chains in the polymeric matrix. The progressive presence of HAMA gave rise to scaffolds with more disorganized, stiffer, and less porous structures owing to the net increase of mass in the hydrogel compositions. HAMA also made hybrid hydrogels more swellable and resistant to collagenase biodegradation. Hence, the suitable choice of polymeric composition allows to regulate the hydrogels´ physical properties to look for the most optimal characteristics required for the intended tissue engineering application.  相似文献   

7.
In vitro, in vivo, and clinical studies have shown how the physicochemical and biological properties of β-tricalcium phosphate (β-TCP) work in bone regeneration. This study aimed to improve the properties of β-TCP by achieving optimum surface and bulk β-TCP chemical/physical properties through the hydrothermal addition of magnesium (Mg) and to later establish the biocompatibility of β-TCP/Mg for bone grafting and tissue engineering treatments. Multiple in vitro and in vivo analyses were used to complete β-TCP/Mg physicochemical and biological characterization. The addition of MgO brought about a modest rise in the number of β-TCP surface particles, indicating improvements in alkaline phosphatase (ALP) activity on day 21 (p < 0.05) and in the WST-1assay on all days (p < 0.05), with a corresponding increase in the upregulation of ALP and bone sialoprotein. SEM analyses stated that the surfaces of the β-TCP particles were not altered after the addition of Mg. Micro-CT and histomorphometric analysis from rabbit calvaria critical defects resulted in β-TCP/Mg managing to reform more new bone than the control defects and β-TCP control at 2, 6, and 8 weeks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001). The hydrothermal addition of MgO to the β-TCP surfaces ameliorated its biocompatibility without altering its surface roughness resulting from the elemental composition while enhancing cell viability and proliferation, inducing more bone regeneration by osteoconduction in vivo and osteoblastic differentiation in vitro.  相似文献   

8.
9.
The role of extracellular vesicles (EVs) proteome in diffuse large B-cell lymphoma (DLBCL) pathology, subclassification, and patient screening is unexplored. We analyzed by state-of-the-art mass spectrometry the whole cell and secreted extracellular vesicles (EVs) proteomes of different molecular subtypes of DLBCL, germinal center B cell (GCB subtype), and activated B cell (ABC subtype). After quality control assessment, we compared whole-cell and secreted EVs proteomes of the two cell-of-origin (COO) categories, GCB and ABC subtypes, resulting in 288/1115 significantly differential expressed proteins from the whole-cell proteome and 228/608 proteins from EVs (adjust p-value < 0.05/p-value < 0.05). In our preclinical model system, we demonstrated that the EV proteome and the whole-cell proteome possess the capacity to separate cell lines into ABC and GCB subtypes. KEGG functional analysis and GO enrichment analysis for cellular component, molecular function, and biological process of differential expressed proteins (DEP) between ABC and GCB EVs showed a significant enrichment of pathways involved in immune response function. Other enriched functional categories for DEPs constitute cellular signaling and intracellular trafficking such as B-cell receptor (BCR), Fc_gamma R-mediated phagocytosis, ErbB signaling, and endocytosis. Our results suggest EVs can be explored as a tool for patient diagnosis, follow-up, and disease monitoring. Finally, this study proposes novel drug targets based on highly expressed proteins, for which antitumor drugs are available suggesting potential combinatorial therapies for aggressive forms of DLBCL. Data are available via ProteomeXchange with identifier PXD028267.  相似文献   

10.
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1–3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.  相似文献   

11.
Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These “extracellular vesicles” (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The “Focus on extracellular vesicles” series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.  相似文献   

12.
Poly(vinyl alcohol)/poly(ethylene glycol) hydrogels containing curcumin as a drug and the various amounts of a montmorillonite nanoclay are prepared using the freezing–thawing method. Nanoclay quantity influence on the physicomechanical properties and the drug release rate of the hydrogel as well as relationship between them is investigated. X-Ray diffraction and Atomic force microscopy analysis reveal the nanoclays have an intercalation structure in the hydrogel, and the hydrogel crystallization decreases with increasing the nanoclay inclusion. From the SEM micrographs observation, it was revealed that due to the presence of the nanoclay in the hydrogel, its porosity decreased. The naonoclay has an amount-depended dual effect on the hydrogel swelling. The swelling mechanism is a normal Fickian diffusion for all the hydrogel samples. Strong physical interactions between the nanoclays and the polymer chains in the nanocomposite hydrogels are evidenced by the rheological studies. These interactions lead to significant reinforcement of the hydrogel tensile strength, intensified by the nanoclay amount. Interestingly, the nanoclays show the capability of accelerating and, also, decelerating the drug release of the hydrogel. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47843.  相似文献   

13.
EVs can be isolated from a conditioned medium derived from mesenchymal stromal cells (MSCs), yet the effect of the pre-processing storage condition of the cell culture-conditioned medium prior to EV isolation is not well-understood. Since MSCs are already in clinical trials, the GMP-grade of the medium which is derived from their manufacturing might have the utility for preclinical testing, and perhaps, for clinical translation, so the impact of pre-processing storage condition on EV isolation is a barrier for utilization of this MSC manufacturing by-product. To address this problem, the effects of the pre-processing storage conditions on EV isolation, characterization, and function were assessed using a conditioned medium (CM) derived from human umbilical cord-derived MSCs (HUC-MSCs). Hypothesis: The comparison of three different pre-processing storage conditions of CM immediately processed for EV isolation would reveal differences in EVs, and thus, suggest an optimal pre-processing storage condition. The results showed that EVs derived from a CM stored at room temperature, 4 °C, −20 °C, and −80 °C for at least one week were not grossly different from EVs isolated from the CM immediately after collection. EVs derived from an in pre-processing −80 °C storage condition had a significantly reduced polydispersity index, and significantly enhanced dot blot staining, but their zeta potential, hydrodynamic size, morphology and size in transmission electron microscopy were not significantly different from EVs derived from the CM immediately processed for isolation. There was no impact of pre-processing storage condition on the proliferation of sarcoma cell lines exposed to EVs. These data suggest that the CM produced during GMP-manufacturing of MSCs for clinical applications might be stored at −80 °C prior to EV isolation, and this may enable production scale-up, and thus, and enable preclinical and clinical testing, and EV lot qualification.  相似文献   

14.
Extracellular vesicles (EVs) are heterogeneous in size (30 nm–10 µm), content (lipid, RNA, DNA, protein), and potential function(s). Many isolation techniques routinely discard the large EVs at the early stages of small EV or exosome isolation protocols. We describe here a standardised method to isolate large EVs from medulloblastoma cells and examine EV marker expression and diameter using imaging flow cytometry. Our approach permits the characterisation of each large EVs as an individual event, decorated with multiple fluorescently conjugated markers with the added advantage of visualising each event to ensure robust gating strategies are applied. Methods: We describe step-wise isolation and characterisation of a subset of large EVs from the medulloblastoma cell line UW228-2 assessed by fluorescent light microscopy, transmission electron microscopy (TEM) and tunable resistance pulse sensing (TRPS). Viability of parent cells was assessed by Annexin V exposure by flow cytometry. Imaging flow cytometry (Imagestream Mark II) identified EVs by direct fluorescent membrane labelling with Cell Mask Orange (CMO) in conjunction with EV markers. A stringent gating algorithm based on side scatter and fluorescence intensity was applied and expression of EV markers CD63, CD9 and LAMP 1 assessed. Results: UW228-2 cells prolifically release EVs of up to 6 µm. We show that the Imagestream Mark II imaging flow cytometer allows robust and reproducible analysis of large EVs, including assessment of diameter. We also demonstrate a correlation between increasing EV size and co-expression of markers screened. Conclusions: We have developed a labelling and stringent gating strategy which is able to explore EV marker expression (CD63, CD9, and LAMP1) on individual EVs within a widely heterogeneous population. Taken together, data presented here strongly support the value of exploring large EVs in clinical samples for potential biomarkers, useful in diagnostic screening and disease monitoring.  相似文献   

15.
16.
While human extracellular vesicles (EVs) have attracted a big deal of interest and have been extensively characterized over the last years, plant-derived EVs and nanovesicles have earned less attention and have remained poorly investigated. Although a series of investigations already revealed promising beneficial health effects and drug delivery properties, adequate (pre)clinical studies are rare. This fact might be caused by a lack of sources with appropriate qualities. Our study introduces plant cell suspension culture as a new and well controllable source for plant EVs. Plant cells, cultured in vitro, release EVs into the growth medium which could be harvested for pharmaceutical applications. In this investigation we characterized EVs and nanovesicles from distinct sources. Our findings regarding secondary metabolites indicate that these might not be packaged into EVs in an active manner but enriched in the membrane when lipophilic enough, since apparently lipophilic compounds were associated with nanovesicles while more hydrophilic structures were not consistently found. In addition, protein identification revealed a possible explanation for the mechanism of EV cell wall passage in plants, since cell wall hydrolases like 1,3-β-glucosidases, pectinesterases, polygalacturonases, β-galactosidases and β-xylosidase/α-L-arabinofuranosidase 2-like are present in plant EVs and nanovesicles which might facilitate cell wall transition. Further on, the identified proteins indicate that plant cells secrete EVs using similar mechanisms as animal cells to release exosomes and microvesicles.  相似文献   

17.
Urinary extracellular vesicles (EVs) and their RNA cargo are a novel source of biomarkers for various diseases. We aimed to identify the optimal method for isolating small (<200 nm) EVs from human urine prior to small RNA analysis. EVs from filtered healthy volunteer urine were concentrated using three methods: ultracentrifugation (UC); a precipitation-based kit (PR); and ultrafiltration (UF). EVs were further purified by size-exclusion chromatography (SEC). EV preparations were analysed with transmission electron microscopy (TEM), Western blotting, nanoparticle tracking analysis (NTA) and an Agilent Bioanalyzer Small RNA kit. UF yielded the highest number of particles both before and after SEC. Small RNA analysis from UF-concentrated urine identified two major peaks at 10–40 nucleotides (nt) and 40–80 nt. In contrast, EV preparations obtained after UC, PR or SEC combined with any concentrating method, contained predominantly 40–80 nt sized small RNA. Protein fractions from UF+SEC contained small RNA of 10–40 nt in size (consistent with miRNAs). These data indicate that most of the microRNA-sized RNAs in filtered urine are not associated with small-sized EVs, and highlights the importance of removing non-vesicular proteins and RNA from urine EV preparations prior to small RNA analysis.  相似文献   

18.
The effect of a chitosan-modified nanoclay (CMNC) on the physical, mechanical, and antimicrobial properties of poly(vinyl alcohol) (PVA) hydrogels prepared by the electron beam irradiation method is reported in comparison with pristine nanoclay (PNC). The X-ray diffraction (XRD) results confirm that the chitosan modification process of nanoclay led to an enhancement in the clay gallery spacing. The inclusion of nanoclays in the PVA matrix decreased the gel content while it increased the swelling degree of the hydrogels. Both PNC and CMNC played a role, depending on their amounts, in swelling of the hydrogel. The swelling kinetic studies revealed a diffusion-controlled swelling process. The diffusion coefficient of water molecules in hydrogels was decreased in the presence of PNC, while it increased with CMNC. Rheological investigations verified the influential role of nanoclays in decreasing the chemical crosslink density of the hydrogel. CMNC exhibited a higher reinforcing effect on hydrogel mechanical properties than PNC did, although the rheological analysis, in agreement with the XRD results, indicated a better dispersion of PNC in the PVA matrix. According to the antimicrobial tests, perfect inhibition of bacteria growth was obtained only for the hydrogels with CMNC. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47444.  相似文献   

19.
Extracellular vesicles (EVs) are evaginations of the cytoplasmic membrane, containing nucleic acids, proteins, lipids, enzymes, and toxins. EVs participate in various bacterial physiological processes. Staphylococcus epidermidis interacts and communicates with the host skin. S. epidermidis’ EVs may have an essential role in this communication mechanism, modulating the immunological environment. This work aimed to evaluate if S. epidermidis’ EVs can modulate cytokine production by keratinocytes in vitro and in vivo using the imiquimod-induced psoriasis murine model. S. epidermidis’ EVs were obtained from a commensal strain (ATC12228EVs) and a clinical isolated strain (983EVs). EVs from both origins induced IL-6 expression in HaCaT keratinocyte cultures; nevertheless, 983EVs promoted a higher expression of the pro-inflammatory cytokines VEGF-A, LL37, IL-8, and IL-17F than ATCC12228EVs. Moreover, in vivo imiquimod-induced psoriatic skin treated with ATCC12228EVs reduced the characteristic psoriatic skin features, such as acanthosis and cellular infiltrate, as well as VEGF-A, IL-6, KC, IL-23, IL-17F, IL-36γ, and IL-36R expression in a more efficient manner than 983EVs; however, in contrast, Foxp3 expression did not significantly change, and IL-36 receptor antagonist (IL-36Ra) was found to be increased. Our findings showed a distinctive immunological profile induction that is dependent on the clinical or commensal EV origin in a mice model of skin-like psoriasis. Characteristically, proteomics analysis showed differences in the EVs protein content, dependent on origin of the isolated EVs. Specifically, in ATCC12228EVs, we found the proteins glutamate dehydrogenase, ornithine carbamoyltransferase, arginine deiminase, carbamate kinase, catalase, superoxide dismutase, phenol-soluble β1/β2 modulin, and polyglycerol phosphate α-glucosyltransferase, which could be involved in the reduction of lesions in the murine imiquimod-induced psoriasis skin. Our results show that the commensal ATCC12228EVs have a greater protective/attenuating effect on the murine imiquimod-induced psoriasis by inducing IL-36Ra expression in comparison with EVs from a clinical isolate of S. epidermidis.  相似文献   

20.
Jie Zhang 《Polymer》2009,50(11):2516-198
Dual temperature- and pH-sensitive comb-type grafted cationic hydrogels are successfully synthesized by grafting polymeric chains with freely mobile ends, which are composed of both N-isopropylacrylamide (NIPAM) segments and N,N-dimethylamino ethyl methacrylate (DMAEMA) segments, onto the backbone of crosslinked poly(NIPAM-co-DMAEMA) networks. Equilibrium and dynamic swelling/deswelling properties of the prepared hydrogels responding to pH and/or temperature are investigated. The prepared hydrogels demonstrate a lower critical solution temperature (LCST) at about 34 °C and a pKa value at about pH 7.3. At lower pH and lower temperature, both the swelling degree and the swelling rate of the comb-type grafted hydrogel are larger than those of the normal-type crosslinked hydrogel. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogel exhibits a more rapid deswelling rate than that of the normal-type hydrogel in response to a pH jump from 2.0 to 11.0 at a fixed temperature. The volume changes of the poly(NIPAM-co-DMAEMA) hydrogels are acute in a series of fixed buffer solutions with an abrupt increase of environmental temperature from 18 °C to a temperature higher than the LCST. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogels show quite fast shrinking behaviors in response to simultaneous dual temperature and pH stimuli. Drug-release in vitro from the prepared poly(NIPAM-co-DMAEMA) hydrogels is carried out when the environmental temperature and pH are changed synchronously. The results show that the model drug Vitamin B12 is released much more rapidly from the comb-type grafted hydrogel than that from the normal-type hydrogel. The proposed dual temperature/pH-sensitive comb-type grafted cationic poly(NIPAM-co-DMAEMA) hydrogel in this study may find various potential applications, e.g., for fabricating rapid-response smart sensors, actuators, and chemical/drug carriers and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号