首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
低含液率多相管路平均持液率   总被引:2,自引:2,他引:0  
The experimental study on average holdup in multiphase pipelines with low loads of liquids was conducted on a large multiphase flow loop. The average holdup increased with increasing liquid load and decreased with increasing gas velocity, and also depended on the undulation of pipeline and flow patterns in the pipeline. The effects of eight dimensionless parameters on average holdup were seriated with grey relational degree analysis so as to find the most important factors affecting the average holdup in multiphase pipelines with low loads of liquids. An average holdup correlation based on low liquid loads was also developed and the correlation related the most important three factors including superficial gas velocity number (Ngw), superficial liquid velocity number (Nlw) and liquid Reynolds number (Rel) to the average holdup. Finally the correlation was tested with the field data and the result was satisfying.  相似文献   

2.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

3.
Experiments and simulations were conducted for bubble columns with diameter of 0.2 m(180 mm i.d.), 0.5 m(476 mm i.d.) and 0.8 m(760 mm i.d.) at high superficial gas velocities(0.12–0.62 m·s-1) and high solid concentrations(0–30 vol%). Radial profiles of time-averaged gas holdup, axial liquid velocity, and turbulent kinetic energy were measured by using in-house developed conductivity probes and Pavlov tubes. Effects of column diameter, superficial gas velocity, and solid concentration were investigated in a wide range of operating conditions. Experimental results indicated that the average gas holdup remarkably increases with superficial gas velocity, and the radial profiles of investigated flow properties become steeper at high superficial gas velocities. The axial liquid velocities significantly increase with the growth of the column size, whereas the gas holdup was slightly affected. The presence of solid in bubble columns would inhibit the breakage of bubbles, which results in an increase in bubble rise velocity and a decrease in gas holdup, but time-averaged axial liquid velocities remain almost the same as that of the hollow column. Furthermore, a 2-D axisymmetric k–ε model was used to simulate heterogeneous bubbly flow using commercial code FLUENT 6.2. The lateral lift force and the turbulent diffusion force were introduced for the determination of gas holdup profiles and the effects of solid concentration were considered as the variation of average bubble diameter in the model. Results predicted by the CFD simulation showed good agreement with experimental data.  相似文献   

4.
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR) including the gas holdup, volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature, p H and superficial gas velocity. The reactor diameter and height were 11 and 30 cm,respectively. It was equipped with a single sparger, operating at atmospheric pressure, 20 and 40℃, and two p H values of 3 and 6. The height of the liquid was 23 cm, while the superficial gas velocity changed within 0.010–0.040 m·s~(-1) range. Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase. The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution. The gas holdup was calculated based on the liquid height change, while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD) in different superficial gas velocities. The results indicated that at the same temperature but different p H, the gas holdup variation was negligible, while the liquid-side volumetric mass transfer coefficient at the p H value of 6 was higher than that at the p H = 3. At a constant p H but different temperatures, the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃ were higher than that of the same at 20℃. A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla) in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.  相似文献   

5.
Bubble formation frequencies in a single orifice two-dimensional gas-solid fluidized bed(292mm×16 mm)were measured by means of a high-sensitivity capacitance probe.A spectrum analyzer was used toanalyze the bubble frequency distribution.The effects of a series of parameters,including particle size(0.105—0.590 mm),particle density (590-2990 kg/m~3),minimum fluidization velocity of particles(0.0072-0.481 m/s),initial bed height (205-565 mm),probe vertical location,jet gas flow rate(0.5-35×10~(-4)m~3s)and background fluidizing gas velocity (0-3 times of minimum fluidization velocity),on the bubble frequencypower spectrum density were investigated.For the fluidized bed with small particles of low density,the bubble formation frequency was in goodagreement with Davidson and Harrison model.The data showed a regular deviation from that model asparticle size and density increased.The model is then modified to account for the fact that with largeparticles,gas will leak from the forming bubble into the surrounding emulsion phase.The modifed leakagemodel agrees with the experimental results.  相似文献   

6.
A number of experiments regarding hydrodynamics have been carried out in the open turbinerotating disc contactor using quartz particles as solid phase,tap water and kerosene as liquid phase.Flooding phenomenon has been observed.The variables studied include the rotor speed,compartment heigh,stator ring opening,column diameter and the superficial velocity of eachphase Correlations for predicting the solid phase holdup and characteristic velocity have been devel-oped.In comparison with liquid-liquid system,the presence of solid particles will result in higherdispersed phase holdup but lower characteristic velocity and total throughput.  相似文献   

7.
The complex liquid film behaviors at flooding in an inclined pipe were investigated with computational fluid dynamic (CFD) approaches. The liquid film behaviors included the dynamic wave characteristics before flooding and the transition of flow pattern when flooding happened. The influences of the surface tension and liquid viscosity were specially analyzed. Comparisons of the calculated velocity at the onset of flooding with the available experimental results showed a good agreement. The calculations verify that the fluctuation frequency and the liquid film thickness are almost unaffected by the superficial gas velocity until the flooding is triggered due to the Kelvin–Helmholtz instability. When flooding triggered at the superficial liquid velocity larger than 0.15 m·s?1, the interfacial wave developed to slug flow, while it developed to entrainment flow when it was smaller than 0.08 m·s?1. The interfacial waves were more easily torn into tiny droplets with smaller surface tension, eventual y evolving into the mist flow. When the liquid viscosity increases, the liquid film has a thicker holdup with more intensive fluctuations, and more likely developed to the slug flow.  相似文献   

8.
Experiments were conducted on a trickle bed with 0.283 m ID to eluddate the relation-ship between hysteretic phenomena and liquid distribution. The hysteresis of pressure drop and the variance of radial liquid distribution were observed simultaneously. Residence time dlstribu-tion (KTD), holdup and mean residence time (RT) of liquid phase were also found to demonmtrate hystereels of the same nature. RTD, liquid holdup and mean RT calculated with a simple model from the distribution of liquid flow rate show chaxacteristic consistant with the experlmeataJ data, suggesting that the hyteretic phenomena originate from the multiplicity and nonuniformity of liquid flow distribution.  相似文献   

9.
The impeller configuration with a six parabolic blade disk turbine below two down-pumping hydrofoil propellers, identified as PDT + 2CBY, was used in this study. The effect of the impeller diameter D, ranging from 0.30T to 0.40T (T as the tank diameter), on gas dispersion in a stirred tank of 0.48 m diameter was investigated by experimental and CFD simulation methods. Power consumption and total gas holdup were measured for the same impeller configuration PDT + 2CBY with four different D/T. Results show that with D/T increases from 0.30 to 0.40, the relative power demand (RPD) in a gas–liquid system decreases slightly. At low superficial gas velocity VS of 0.0078 m·s-1, the gas holdup increases evidently with the increase of D/T. However, at high superficial gas velocity, the systemwith D/T=0.33 gets a good balance between the gas recirculation and liquid shearing rate, which resulted in the highest gas holdup among four different D/T. CFD simulation based on the two-fluid model along with the Population Balance Model (PBM) was used to investigate the effect of impeller diameter on the gas dispersion. The power consumption and total gas holdup predicted by CFD simulation were in reasonable agreement with the experimental data.  相似文献   

10.
A new developed external loop airlift slurry reactor, which was integrated with gas–liquid–solid three-phase mixing, mass transfer, and liquid–solid separation simultaneously, was deemed to be a promising slurry reactor due to its prominent advantages such as achieving continuous separation of clear liquid from slurry and cyclic utilization of solid particles without any extra energy, energy-saving, and intrinsic safety design. The principal operating parameters, including gas separator volume, handling capacity, and superficial gas velocity, are systematically investigated here to promote the capabilities of mixing, mass transfer, and yield in the pilot external loop airlift slurry reactor. The influences of top clearance and throughput of the clear liquid on flow regime and gas holdup in the riser, liquid circulating velocity, and volumetric mass transfer coefficient with a typical high solid holdup and free of particles are examined experimentally. It was found that increasing the gas separator volume could promote the liquid circulating velocity by about 14.0% at most. Increasing the handling capacity of the clear liquid from 0.9 m~3·h~(-1) to 3.0 m~3·h~(-1) not only could increase the output without any adverse consequences, but also could enhance the liquid circulating velocity as much as 97.3%. Typical operating conditions investigated here can provide some necessary data and guidelines for this new external loop airlift slurry reactor to upgrade its performances.  相似文献   

11.
报道了开发镍基非晶态合金加氢催化剂的实验室研究、中试研究及工业应用研究结果。向非晶态合金中加入少量原子半径大的其他元素,使非晶态合金的晶化温度由360℃提高到520℃;在含镍非晶态合金中加入铝,然后用碱将铝抽出,使非晶态合金比表面积由1m^2/g增加到100m^2/g以上;在建立30t/a非晶态合金生产示范装置中,自行设计了特殊的喷嘴和选用适宜的坩埚材质,使生产成品率由20%左右提高到95%以上,利用副产的偏铝酸钠,合成NaY分子筛,形成了整体的清洁生产过程;重点介绍了非晶态合金加氢催化剂经在三个工厂工业应用成功,三项工业应用成果每年为企业创造直接效益6700万元。还报道了对磁稳定床反应器的研究开发,经在20kt/a磁稳定床加氢示范装置上3500h试验,其生产效率比釜式加氢过程提高4倍,催化剂消耗减少50%。  相似文献   

12.
在磁稳定床冷模中以水为液相,非晶态合金催化剂(SRNA-4)为固相,探索磁稳定床反应器流动特性,并考察电磁线圈的放大效应,为工业磁稳定床反应器的设计提供数据。  相似文献   

13.
细粉颗粒为固相的气液固三相磁稳定床操作特性   总被引:6,自引:0,他引:6       下载免费PDF全文
慕旭宏  闵恩泽 《化工学报》1996,47(6):746-750
  相似文献   

14.
1 INTRODUCTION Magnetically stabilized beds (MSB) exhibit an unique combination of packed-bed and fluidized-bed properties. Gas-liquid-solid (G-L-S) three-phase MSB has recently attracted more attention in the field of biotechnology processes (such as bioseparation or immobilized enzyme systems) and chemical engi- neering(such as the hydrogenation reaction system). The interphase mass transfer behavior plays an im- portant role in the optimal operation of practical MSB. However, many…  相似文献   

15.
丁洁 《当代化工》2016,(1):54-56
在内径0.152 m,高2.5 m的气-液-固三相逆流化床中系统研究了动力学特性。获得了气体和液体速度及聚乙烯和聚丙烯颗粒密度对各相含率和最小液体流化速度的影响规律。研究发现随着气体速度的增加,液体最小流化速度降低;随着气体或液体速度增加,气体、液体和固体含率均增加。  相似文献   

16.
李笛  张发根  曾振祥 《化学工程》2011,39(10):63-67
在液速陡变时,分别考察了铅直管液固流化床内粒径为225 μm和511 μm的玻璃微珠的体积分数分布随时间变化的规律,发现大小颗粒在不同的液速变化幅度下都呈现出同样的体积分数变化趋势.联立颗粒速度和颗粒的连续方程式模拟颗粒的体积分数变化过程,建立了一个相对简单的颗粒体积分数变化的数学模型.在模型中,用定常状态的空隙率方程...  相似文献   

17.
Reactant (CO and H 2 ) concentration and conversion profiles were determined as a function of axial distance for the Fischer-Tropsch reaction in a slurry bubble column reactor. Model equations were developed from the basic concepts, i.e., conservation of mass and momentum, and combined with iron catalyst reaction kinetics as well as mass transfer coefficients, gas, liquid, and solid phase holdup, Henry's Law constants, minimum fluidization velocity, and terminal velocity obtained from empirical correlations. Concentration profiles and conversion were determined for varying key process variables: liquid-phase velocity and rate constant. Results suggest that the reaction is kinetically limited and that conversion is proportional to liquid velocity. Thus, process improvements can be achieved by either maximizing liquid-phase velocity or increasing the rate constant by modifying the catalyst.  相似文献   

18.
Reactant (CO and H 2 ) concentration and conversion profiles were determined as a function of axial distance for the Fischer-Tropsch reaction in a slurry bubble column reactor. Model equations were developed from the basic concepts, i.e., conservation of mass and momentum, and combined with iron catalyst reaction kinetics as well as mass transfer coefficients, gas, liquid, and solid phase holdup, Henry's Law constants, minimum fluidization velocity, and terminal velocity obtained from empirical correlations. Concentration profiles and conversion were determined for varying key process variables: liquid-phase velocity and rate constant. Results suggest that the reaction is kinetically limited and that conversion is proportional to liquid velocity. Thus, process improvements can be achieved by either maximizing liquid-phase velocity or increasing the rate constant by modifying the catalyst.  相似文献   

19.
空气-SRNA-4催化剂磁稳定床的流动特性   总被引:1,自引:0,他引:1  
床层压降、最小流化速度、固含率及其分布和气相返混系数是气固磁稳定反应器放大与优化所必需的基础数据.采用压降法、光电法及瞬态点源示踪技术试验研究了以SRNA-4催化剂为固相的气固磁稳定床的流动特性.试验结果表明:最小流化速度、最小流化状态下的床层空隙率与磁场强度无关;固含率的径向分布基本均匀;磁场强度的增大抑制了颗粒的运动,使得局部固含率略微增加;空塔气速的增加促进了气固磁稳定床的膨胀,使得固含率减小;粒径较小时,随磁场强度及气速的变化贝克来数(Pe)变化不大;粒径较大情况下,Pe随气速增大而减小,随着磁场强度的增大,先增大后减小.试验获得了最小流化速度、固含率和床层高度的关联式,预测值与试验值吻合良好.  相似文献   

20.
Experiments were performed to study the hydrodynamics of a cocurrent three‐phase fluidized bed with liquid as continuous phase. Based on the 209 experimental data (with four liquid systems and five different particles) along with 115 literature data from six different sources on minimum fluidization velocity, a unique correlation for the estimation of minimum fluidization velocity in two‐phase (ug = 0) as well as in three‐phase systems is developed. A data bank consisting of 1420 experimental measurements for the fractional gas phase holdup data with a wide range of variables is used for developing empirical correlations. Separate correlations are developed for two flow regimes observed in this present work. The proposed correlations are more accurate and simpler to use. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号