首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carburization of austenitic stainless steels under paraequilibrium conditions—i.e., at (low) temperatures where there is essentially no substitutional diffusion—leads to a family of steels with remarkable properties: enhanced hardness, resulting in improved wear behavior, enhanced fatigue, and corrosion resistance, and with essentially no loss in ductility. These enhanced properties arise from an enormous carbon solubility, which, absent carbide formation, is orders of magnitude greater than the equilibrium solubility. Using interaction parameters from the latest CALPHAD assessment of the Fe-Cr-Ni-carbon system, the authors have calculated the equilibrium and paraequilibrium carbon solubility in a model Fe-18Cr-12 Ni (wt pct) austenitic steel (essentially a model 316L composition), as well as the carbon solubility in this austenite when paraequilibrium carbide formation occurs (i.e., when carbides form in a partitionless manner). For temperatures in the range 725 to 750 K, the calculations predict a paraequilibrium carbon solubility of ~5.5 at. pct. Carburization of 316L stainless steel at these temperatures, however, results in significantly higher concentrations of carbon in solid solution—up to 12 at. pct. Much better agreement with experimental data is obtained by calculating the paraequilibrium carbon solubility using Wagner interaction parameters, taken from the most comprehensive experimental study of this system. The discrepancy between the two predicted solubilities arises because the CALPHAD Cr-carbon interaction parameters are not sufficiently exothermic at the low temperatures used for paraequilibrium carburization. After multiple paraequilibrium carburization cycles, carbide formation can occur. The carbides that form under these conditions do so in a near-partitionless manner (there is modest Ni rejection to the austenite/carbide interface) and have an unusual stoichiometry: M5C2 (the Hägg or η carbide).  相似文献   

2.
The pitting corrosion resistance of surface-modified 316L austenitic stainless steel and N08367 (a “superaustenitic” stainless steel) were evaluated in 0.6 M NaCl solutions and compared to untreated samples of the same materials. The surface modification process used to treat the surfaces was a low-temperature carburization technology termed “low-temperature colossal supersaturation” (LTCSS). The process typically produces surface carbon concentrations of ~15 at. pct without the formation of carbides. The pitting potential of the LTCSS-treated 316L stainless steel in the NaCl solution substantially increased compared to untreated 316L stainless steel, while the pitting behavior of the LTCSS-treated N08367 was unchanged compared to the untreated alloy. This article is based on a presentation given at the “International Conference on Surface Hardening of Stainless Steels,” which occurred October 22–23, 2007 during the ASM Heat Treating Society Meeting in Cleveland, OH under the auspices of the ASM Heat Treating Society and TMS.
P.M. Natishan (Doctor)Email:
  相似文献   

3.
4.
5.
6.
Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon expanded austenite obtained by low-temperature gaseous carburizing of AISI 316. X-ray diffraction was applied for the determination of lattice spacing depth profiles by destructive depth profiling and reconstruction of the original lattice spacing profiles from the measured, diffracted intensity weighted, values. The compressive stress depth distributions correlate with the depth distribution of the strain-free lattice parameter, the latter being a measure for the depth distribution of carbon in expanded austenite. Elastically accommodated compressive stress values as high as −2.7 GPa were obtained, which exceeds the uniaxial tensile yield strength by an order of magnitude. This article is partly based on a presentation given at the “International Conference on Surface Hardening of Stainless Steels,” which occurred October 22–23, 2007 during the ASM Heat Treating Society Meeting in Cleveland, OH under the auspices of the ASM Heat Treating Society and TMS.
Marcel A.J. Somers (Professor of Physical Metallurgy and Leader of Division of Materials Science and Engineering)Email:
  相似文献   

7.
The nucleation kinetics of proeutectoid ferrite during continuous cooling in three Fe-C-Mn-Si steels, measured in-situ by three-dimensional X-ray diffraction microscope, are compared with numerical simulation that takes into account differences in the activation energy of nucleation among grain boundary faces, edges, and corners. The essential feature of ferrite nucleation in the 0.21 pct C steel, i.e., nucleation occurred just below Ae3 and ceased at a small undercooling, is reproduced taking into account the site consumption, primarily at grain corners and overlap of solute diffusion fields in the grain boundary region or the matrix and assuming a very small or almost null activation energy of nucleation. In the 0.35 and 0.45 pct C steels, small activation energy, as reported by Offerman et al., was not unequivocally obtained because ferrite nucleation occurred at considerably large undercoolings, even below the paraequilibrium Ae3 in these steels. The increasing rate of the observed particle number with decreasing temperature is considerably smaller than calculation. This article is based on a presentation given in the symposium entitled “Solid-State Nucleation and Critical Nuclei during First Order Diffusional Phase Transformations,” which occurred October 15–19, 2006 during the MS&T meeting in Cincinnati, Ohio under the auspices of the TMS/ASMI Phase Transformations Committee.
M. Enomoto (Professor)Email:
  相似文献   

8.
Austenitic stainless steel was carburized at low temperature to generate a hard surface layer. X-ray diffractometry (XRD) revealed that this “case” contained an expanded fcc lattice and significant residual stresses due to the interstitial carbon. The XRD patterns also exhibit consistent variations with crystallographic orientation. Using published elastic constants for austenitic stainless steel and appropriate approximations for the XRD elastic constants, the XRD peak position variations can be accounted for by orientation-dependent Poisson effects due to biaxial residual stresses. The XRD patterns of specimens containing either compressive or tensile residual stresses were consistent with this hypothesis. This article is based on a presentation given at the “International Conference on Surface Hardening of Stainless Steels,” which occurred October 22–23, 2007 during the ASM Heat Treating Society Meeting in Cleveland, OH under the auspices of the ASM Heat Treating Society and TMS.
A. H. Heuer (Professor)Email:
  相似文献   

9.
The effect of strain rate on the yield stress of ferritic stainless steel sheet was experimentally determined and a previously developed model was applied to the data. Five ferritic stainless steel alloys, including one in two thicknesses, were mechanically tested at room temperature in uniaxial tension at strain rates ranging from 0.001 to 300 s−1, and low-strain-rate tests were selectively performed at nonambient temperatures. The hypothesis that ferritic stainless steels react similarly to strain rate as mild steels was investigated by the application of a widely accepted strengthening model, based on body-centered-cubic (bcc) crystal lattice deformation mechanisms, to the experimental data.[1] Yield stresses were compared to model predictions and good agreement was found. The results allow for the prediction of yield stresses for these materials over strain rate ranges of 0.001 to 300 s−1, and as a function of test temperature. Model parameters for the ferritic stainless steels were reasonable relative to those previously reported for pure bcc ferritic iron.[1] A correlation between the effect of alloying additions on solid solution strengthening and the athermal component of shear stress is also suggested. The results allow prediction of yield stress of ferritic stainless steels over a wide range of strain rates and temperatures. This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.
Kester D. Clarke (Graduate Research Assistant)Email:
  相似文献   

10.
11.
12.
The HASTELLOY C2000 superalloy is a commercially designed superalloy manufactured to function in reducing and oxidizing corrosive solutions. The industrial applications have tremendous potential in automotive, structural, aviation, and storage components. Although C2000 demonstrates good reducing and oxidizing traits in extremely aggressive media (which are attractive features of its chemistry), changes in the mechanical properties are believed to be insignificant due to its strong propensity to passivate under corrosive conditions. The ductility behavior and corrosion properties of C2000 are superior to those of stainless steels. The objective of the present study is to examine the corrosion-fatigue behavior of C2000 in a 3.5 wt pct sodium-chloride (NaCl) solution. C2000 submerged in 3.5 wt pct NaCl at room temperature is not susceptible to localized corrosion, such as pitting, during fatigue. At an accelerated potential of 350 mV, the current responses show an increase in the current due to slip steps emerging to the surface as a result of fatigue. The crack-initiation site and the examination of the fracture morphology are discussed. This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006 in San Antonio, Texas and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.
R.V. Steward (Graduate Student, Materials Scientist/Engineer)Email: Email:
  相似文献   

13.
Many high-strain-rate compression measurements (2000 per second) using a specially designed split Hopkinson pressure bar (SHPB) for the plastic-bonded explosive PBX9501 have been reported in the literature, but there is a sparsity of data for a United Kingdom polymer-bonded explosives (PBX) known as EDC37. Both EDC37 and PBX9501 are cyclotetramethylenetetranitramine-based (HMX-based) PBXs with high filler contents. The binder systems for the PBXs are very different: EDC37 consists of a nitroplasticized nitrocellulose and PBX9501 a nitroplasticized ESTANE. PBX9501 exhibits nearly invariant fracture strains of ∼1.5 pct as a function of temperature at high strain rates, whereas EDC37 fails at ∼2 to 2.5 pct. The maximum compressive strengths for both PBXs were measured at 150 Mpa at −55 °C, but at +55 °C, the PBX was found to have a maximum strength of ∼55 MPa compared with ∼20 MPa for EDC37. Both PBXs exhibit an increasing loading moduli, E, with increasing strain rate or decreasing temperature. This article is based on a presentation made in the symposium entitled “Dynamic Behavior of Materials,” which occurred during the TMS Annual Meeting and Exhibition, February 25–March 1, 2007 in Orlando, Florida, under the auspices of The Minerals, Metals and Materials Society, TMS Structural Materials Division, and TMS/ASM Mechanical Behavior of Materials Committee.
R.K. Govier (Material Scientist)Email:
  相似文献   

14.
15.
16.
Effects on metal targets after an explosion include the following: fracture, plastic deformation, surface modifications, and microstructural crystallographic alterations with ensuing mechanical properties changes. In the case of small charge explosions, macroscopic effects are restricted to small charge-to-target distances, whereas crystal alterations can still be observed at moderate distances. Microstructural variations, induced on gold-alloy disk samples, as compared to previous results on AISI 304Cu steel samples, are illustrated. The samples were subjected to blast-wave overpressures in the range of 0.5 to 195 MPa. Minimum distances and peak pressures, which could still yield observable alterations, were especially investigated. Blast-related microstructural features were observed on the explosion-exposed surface and on perpendicular cross sections. Analyses using X-ray diffraction (XRD) were performed to identify modifications of phase, texture, dislocation density, and frequency of mechanical twins, before and after the explosions. Optical metallography (OM) and scanning electron microscopy (SEM) observations evidenced partial surface melting, zones with recrystallization phenomena, and crystal plastic deformation marks. The latter marks are attributed to mechanical twinning in the stainless steel and to cross-slip (prevalent) and mechanical twinning (possibly) in the gold alloy. This article is based on a presentation given in the symposium “Dynamic Behavior of Materials,” which occurred February 26–March 1, 2007, during the TMS Annual Meeting in Orlando, FL, under the auspices of the TMS Structural Materials Division and the TMS/ASM Mechanical Behavior of Materials Committee.
D. Firrao (Full Professor)Email:
  相似文献   

17.
18.
The microstructure and mechanical properties of Cu50Zr50−x Ti x (2.5 ≤ x ≤ 7.5) glass matrix composites have been investigated. The presence of austenitic (Pm-3m)/martensitic phases (P21/m and Cm) enhances the plastic deformability significantly. These composites show high yield strength up to 1753 MPa and large plastic strain over 15 pct. Their high strength scales with the volume fraction of glassy matrix and crystalline phase. When the austenitic phase forms instead of the martensite, the work hardening of the composite material increases. This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.
S. Pauly (Postdoctoral Student)Email:
  相似文献   

19.
20.
Investigations of the production of thin-walled steel alloys through the gas carburization of structures made from reduced and sintered metal oxide powders were performed. Extrusions with low-alloy steel composition were produced successfully without the occurrence of metal dusting, yielding a novel technique for the production of thin-walled steel structures. Thin strip geometries (~200 to 300 μm final thickness) of samples with the composition of 4140 steel, without carbon, were produced through the extrusion of a paste of metal-oxide powders. Full reduction and sintering in a 10 pct H2/90 pct Ar atmosphere yielded a metal part containing all necessary alloying elements except carbon. Gas carburization in a controlled CO/CO2 atmosphere was then used to introduce carbon through the thickness of the structure while carburization parameters were controlled such that metal dusting was not observed. It has been shown in this study, through heat treatment and microstructural investigations, that structures with 4140 composition displaying microstructures and mechanical properties comparable with conventionally made steels can be reached in approximately 30 minutes during gas carburization. The research shows that carbon contents above the eutectoid composition can be reached in less than 30 minutes. As a result, a novel alloy development tool has been introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号