首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New compositions in the melt-grown eutectic ceramics field are investigated for thermomechanical applications. This paper is focused on the Al2O3–Sm2O3–(ZrO2) system. The studied compositions give rise to interconnected microstructures without anisotropy along the growth direction. At variance with the binary eutectic Al2O3–SmAlO3, the homogeneity of the microstructure of the Al2O3–SmAlO3–ZrO2 ternary eutectic is less sensitive to the growth rate. Interfaces between the alumina and perovskite phases are investigated by high-resolution transmission electron microscopy (TEM). They are semi-coherent. In stepped interfaces, the facets are parallel to dense planes of each phase. The steps have a dislocation character and may accommodate both misfits. The ternary eutectic displays a very good creep behaviour with strain rates very close to those obtained on other previously studied eutectics in the Al2O3–RE2O3(RE = Y, Gd, Er)–ZrO2 systems. The deformation micromechanisms are analysed by TEM in the three eutectic phases. After creep, dislocations are present in every phase. The activation of unusual slip systems (pyramidal slip in the alumina phase) shows that high local stresses can be reached. The presence of dislocation networks with low energy configurations is consistent with predominance of dislocation climb processes controlled by bulk diffusion.  相似文献   

2.
Highly permeable macroporous implants of various architectures for bone grafting have been fabricated by thermal extrusion 3D printing using highly filled β-Ca3(PO4)2/poly(D,L-lactide) (degree of filling up to 70 wt %) and β-Ca3(PO4)2/poly(ε-caprolactone) (degree of filling up to 70 wt %) composite filaments. To modify the surface of the composite macroporous implants with the aim of improving their wettability by saline solutions, we have proposed exposing them to a cathode discharge plasma (2.5 W, air as plasma gas) in combination with subsequent etching in a 0.5 M citric acid solution. It has been shown that the main contribution to changes in the wettability (contact angle) of the composites is made by the changes produced in their surface morphology by etching in a low-temperature plasma and citric acid. An alternative approach to surface modification of the composites is to produce a carbonate hydroxyapatite layer via precipitation from a simulated body fluid solution a factor of 5 supersaturated relative to its natural analog (5xSBF).  相似文献   

3.
The (100) oriented and random oriented 0.755Bi0.5Na0.5TiO3–0.065BaTiO3–0.18SrTiO3 (BNT–BT–ST) thin films were deposited on LaNiO3 (LNO) buffered Pt(111)/Ti/SiO2/Si substrates by the sol–gel processing technique. The orientation is controlled by the concentration of solution. The structure, dielectric and piezoelectric properties of the thin films are significantly affected by the crystallographic orientation. The (100) oriented BNT–BT–ST thin film has improved dielectric and piezoelectric properties. For the (100) oriented and random oriented BNT–BT–ST thin films, the dielectric constants are 660 and 550, the dielectric losses are 0.045 and 0.076 and the effective piezoelectric coefficients are 140 and 110 pm/V, respectively. The large piezoelectric response is attributed to the uniform microstructure and increased lattice distortion along (100) direction.  相似文献   

4.
xSr0.7Ce0.2TiO3–(1???x)Sr(Mg1/3Nb2/3)O3 ceramics, referred to xSCT–(1???x)SMN, were successfully produced by conventional solid-state sintered technology. The compounds, belonging to perovskites with a secondary phase of CeO2, can be detected even with x down to 0.1 of SCT composition. The overall trend for grain growth illustrates the increase with increasing SCT doping level. The Raman peak at 825 cm?1 splits into two peaks and causes red shift phenomenon. XPS spectra indicate that Ti and Nb ions exist respectively in tetravalence and pentavalence, and Ce ions exist in trivalence and tetravalence. Dielectrics constant (ε r ) of SCT–SMN ceramics gradually increases with increasing theoretical dielectric polarizabilities. A wider width of the 825 cm?1 for FWHM of A1g mode Raman peaks suggests to a lower Q?×?f value. The increasing tolerance factor in agreement with temperature coefficient of resonant frequency (τ f ), denotes that the rise of perovskite symmetry. The 0.1SCT–0.9SMN ceramic sintered at 1450?°C for 4 h illustrates excellent microwave dielectric properties with ε r ?~?35.4, Q?×?f?~?11282 GHz and τ f ?~?1.7 ppm/°C. Activation energies of 0.1SCT–0.9SMN ceramic at 100, 300 and 500 V, are ~0.436, 0.427 and 0.331 eV, respectively, indicative of a decreased trend with external electric field.  相似文献   

5.
Dense lead-free binary system piezoelectric ceramics (1 − x)[Bi0.5(Na0.7K0.25Li0.05)0.5]TiO3xBa(Ti0.95Zr0.05)O3 (BNKLT–BZT) were prepared by a two-step sintering process. A phase transition from rhombohedral to tetragonal was observed with increasing BZT fraction in the range x = 0.06–0.1 and the morphotropic phase boundary (MPB) between rhombohedral and tetragonal appears in this range. Ceramics containing 10 mol% BZT with tetragonal phase near the MPB region has the maximum piezoelectric constant d 33(151pC/N).  相似文献   

6.
The crystal structure of a previously unknown Np(V) sesquioxalate, Na4(NpO2)2(C2O4)3·2H2O was studied. The crystal structure consists of neptunyl(V) cations, sodium cations, oxalate anions, and water molecules of crystallization. Neptunyl(V) cations and oxalate ions form anionic chains [(NpO2)2(C2O4)3] n 4n? . The coordination polyhedron (CP) of Np (pentagonal bipyramid) contains two apical “yl” oxygen atoms and five equatorial O atoms of three oxalate ions. The CP of Na(1) and Na(2) cations are combined through the common edges into zigzag chains in the [010] direction. Two independent oxalate ions are tridentate and tetradentate ligands.  相似文献   

7.
We have studied phase relations in the K2MoO4–Ln2(MoO4)3–Zr(MoO4)2 (Ln = La–Lu, Y) systems by the method of “intersecting cuts,” identified pseudobinary joins in their composition triangles, and constructed their phase compatibility diagrams. The systems have been shown to contain new ternary molybdates with the general formula K5LnZr(MoO4)6 (Ln = Dy–Lu and Y). The thermal characteristics of the synthesized compounds have been studied by differential scanning calorimetry in the temperature range 25–700°C. The new ternary molybdates crystallize in a trigonal structure (sp. gr. R\(\bar 3\)c, Z = 6).  相似文献   

8.
The structure of a double neptunium(V) lanthanum nitrate, La(NpO2)3(NO3)6·nH2O, was studied by single crystal X-ray diffraction. Each neptunyl(V) ion in the structure of the compound is bonded to four other neptunyl(V) ions, acting simultaneously as a bidentate ligand and as a coordination center for two other dioxocations. The cation-cation interaction of the neptunyl(V) ions results in formation of trigonal-hexagonal cationic networks. The surrounding of each Np atom also includes two bidentate nitrate ions. The CN of the Np atom is 8, and the coordination polyhedron is a distorted hexagonal bipyramid. The La3+ cations are surrounded only by water molecules.  相似文献   

9.
A new Pu(VII) compound, K3PuO4(OH)2·2H2O, was synthesized, and its structure was studied by single crystal X-ray diffraction. This compound is isostructural to the previously described K3NpO4(OH)2·2H2O. The structure of the latter compound was redetermined to obtain more precise interatomic distances in the NpO2(OH) 2 3? anion. Changes in An-O bond lengths in the tetragon-bipyramidal coordination polyhedron of the compounds K3AnO4(OH)2·2H2O in going from Np(VII) to Pu(VII) were considered.  相似文献   

10.
BaFe12O19 hexaferrite films have been produced on thermally oxidized single-crystal silicon (SiO2/Si) substrates by sequential ion-beam sputtering of BaFe2O4 and α-Fe2O3 targets in an argon-oxygen atmosphere. Their crystal structure has been studied, and the origin of the impurity phases forming during heat treatment has been identified. The results show that heat treatment may lead to the formation of eutectic melts. As a result, the hexaferrite films may contain spherulites.  相似文献   

11.
We have synthesized nanoparticulate cobalt(II) hydroxide containing Co2+ in tetrahedral oxygen coordination (Co Td 2+ ), atypical of such systems: nano- [Co(OH)2(H3O) δ + ]δ+. The (Co Td 2+ ) coordination in the hydroxide is inferred from its electronic diffuse reflectance spectrum, which shows a multiplet of strong absorption bands at 14500, 15000, and 16000 cm?1 (4 A 2(F)-4 T 1(P) transition). Nanoparticulate cobalt(II) hydroxide forms in a weakly acidic medium under essentially nonequilibrium conditions due to supersaturation (by three to four orders of magnitude) with the starting reagents (CoCl2 and LiOH) at the instant of the formation of the poorly soluble phase Co(OH)2. Presumably, colloidal particles of nanoparticulate cobalt(II) hydroxide in a weakly acidic aqueous medium have a positive surface charge, compensated by a counter-ion (Cl?) layer: nano-[Co(OH)2(H3O) δ + ]δ+ · δCl?. The XRD patterns of pastes (gels) containing this hydroxide show three broad-ened lines with d = 5.31 (2θ = 16.7°), 2.77 (2θ = 32.3°), and 2.32 Å (2θ = 38.8°). According to small-angle X-ray scattering data, nano-[Co(OH)2(H3O) δ + ]δ+ has a narrow particle size distribution (1.0–2.0 nm). Synthesis and storage conditions are identified which ensure stabilization of the electronic state and particle size of nano-[Co(OH)2(H3O) δ + ]δ+ for a long time.  相似文献   

12.
Reactions between thin films of CA2 and (0001)-oriented α-Al2O3 have been studied using a combination of microscopy techniques. Thin films of amorphous CA2 were deposited on sapphire substrates by pulsed-laser deposition at 900 °C in an oxygen ambient atmosphere. After deposition, the reaction couples were heat treated in air for various times either at 1300 or 1400 °C. Atomic-force microscopy was used to monitor changes in the microstructure of the films. Interfaces between the different regions were examined by transmission electron microscopy (TEM) of cross-sectional samples prepared by focused ion-beam milling. The CA2 films had dewetted the substrate surface as a result of the heat treatment. An interfacial reaction layer was observed between the dewetted CA2 droplets and the substrate. The structure of this reaction layer was found to be consistent with γ-Al2O3 by computer analysis of high-resolution TEM images. There is a perfect epitaxy between the interfacial layer and the substrate. For the samples heat treated for longer times, hexagonal features were found on the substrate surface. The presence of these features on (0001)-oriented α-Al2O3 suggests that CA6 platelets form by the transformation of the interfacial reaction layer. The results are discussed in relation to the crystallization behavior of the various calcium aluminate phases and the equilibrium-phase diagram of the CaO–Al2O3 system.  相似文献   

13.
We have investigated the interaction between (Bi,Pb)2Sr2Ca2Cu3O10+δ (Bi-2223) and small additions (0.05–0.3 wt %) of nitride powders (TaN, AlN, HfN, NbN, Si3N4, TiN, and ZrN) with a particle size from 0.02 to above 0.5 μm and the effect of these nitrides on the microstructure, phase composition, distribution, and morphology of the resulting second-phase inclusions. The concentration and particle size of the nitrides and sintering conditions are shown to influence the superconducting transition temperature T c, critical current density j c, irreversible remanent magnetization, bulk density, and mechanical properties of the Bi-2223/nitride composites.  相似文献   

14.
Differential thermal analysis and x-ray diffraction data indicate that the ZnO B2O3-CuO B2O3 join of the ternary system CuO-B2O3-ZnO is pseudobinary, with eutectic phase relations and a liquid-liquid miscibility gap in the composition range 25–35 mol % CuO.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 339–340.Original Russian Text Copyright © 2005 by Kasumova, Bananyarly.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

15.
The previously unknown Np(VII) compound Li[C(NH2)3]2[NpO4(OH)2]·6H2O (I), containing organic cations, was synthesized and studied by single crystal X-ray diffraction. In contrast to the relatively numerous structurally characterized salts of [NpO4(OH)2]3– anions with Na+, K+, Rb+, and Cs+ cations, which were prepared only from strongly alkaline media, crystals of I were isolated from solutions with a very low concentration of OH ions (about 0.1 M). The compound is relatively stable in storage in the dry form, but is strongly hygroscopic. In the structure of I, there are two independent Np(VII) atoms with the oxygen surrounding in the form of tetragonal bipyramids. In contrast to the other salts of the [NpO4(OH)2]3– anions with singlecharged alkali metal cations, the C(NH2) 3 + ions and hydrated Li+ ions in I interact with the oxygen surrounding of Np(VII) only via hydrogen bonds of types Ow–H···O and N–H···O with the formation of a three-dimensional H-bond network.  相似文献   

16.
The dc conductivity of the glasses in the Fe2O3-Bi2O3-K2B4O7 system was studied at temperatures between 223 and 393 K. At temperatures from 300 to 223 K, T–1/4 (T is temperature) dependence of the conductivity was found, however, both Mott variable-range hopping and Greaves intermediate range hopping models are found to be applicable. Mott and Greaves parameters analysis gave the density of states at Fermi level N (EF) = 3.13 × 1020–21.01 × 1020 and 1.93 × 1021–16.39 × 1021 cm–3eV–1 at 240 K, respectively. The variable-range hopping conduction occurred in the temperature range T = 300–223 K, since WD was found to be large (WD = 0.08–0.14 eV for these glasses) and dominated the conduction at T < 300 K.  相似文献   

17.
We have studied the effect of Bi(Mg0.5Ti0.5)O3 additions on the phase formation, structural parameters, microstructure, and dielectric properties of solid solutions in the region of a morphotropic phase boundary in the BiFeO3–BaTiO3 system. Single-phase samples with the perovskite structure have been obtained and the addition of Bi(Mg0.5Ti0.5)O3 has been shown to raise the Curie temperature of the ceramics and improve their dielectric properties.  相似文献   

18.
Lead-free (K0.48Na0.52)(W2/3Bi1/3)xNb1−xO3 (KNN-WBi) piezoceramics with x ranging from 0.004 to 0.010 were synthesized by conventional ceramic processing. The sintered KNN-WBi ceramics showed perovskite structure without detectable secondary phase containing W and Bi. With increasing x, the orthorhombic-tetragonal phase transition temperature (T O-T) decreased from 200 to 184 °C whereas, the tetragonal-cubic phase transition temperature (T C) decreased slightly. With the doping of (W2/3Bi1/3), the piezoelectric properties were greatly improved and the piezoelectric constants d 33, k p, Q m exhibited maximum values of 136 pC/N, 43.3% and 175, respectively at x = 0.008. The KNN-WBi ceramics also exhibited good ferroelectric properties with remnant polarizations P r higher than 25 μC/cm2 and coercive fields E c lower than 1,000 V/mm. The results strongly suggest that the B site doping of constructed quinquevalent element is an effective method for the investigation of potassium sodium niobate system.  相似文献   

19.
(1 − x)BaTiO3x(Bi0.5Na0.5)TiO3 (x ranged from 0.01 to 0.96) ceramics were fabricated by the conventional ceramic technique. The crystal structure, as well as dielectric and piezoelectric properties of the ceramics were studied. All the ceramics formed single-phase solid solutions with perovskite structure after sintering in air at 1150–1250 °C for 2–4 h. The crystal structure and microstructure varied gradually with the increase of (Bi0.5Na0.5)TiO3 (BNT) content. The Curie temperature, T c, shifted monotonously to high temperature as BNT increased. The ceramics with 20–90 mol% BNT had relatively low and stable dielectric loss characteristics. The piezoelectric constant, d 33, enhanced with the increase of BNT content through a maximum value in a composition of 93 mol% BNT and then tended to decrease. The maximum value, 148 pC/N, of piezoelectric constant d 33 together with the electromechanical coupling factors, k t, 19.8% and k p, 15.8%, were obtained when BNT was 93 mol%.  相似文献   

20.
Mixed-anion compounds of the general composition [(CH3)4N][(AnO2)(CrO4)(NO3)], where An = U, Np, and Pu, were synthesized and structurally characterized. The structural motif of these compounds is based on anionic ribbons of the composition [AnO2(NO3)(CrO4)]nn–, consisting of seven-vertex An polyhedra linked via oppositely oriented CrO4 tetrahedra and NO3 groups acting in the An polyhedra as terminal bidentate ligands. Every four anionic ribbons form channels oriented along b-axis. Tetramethylammonium cations linked with the O atoms of the ribbons by hydrogen bonds are located in these channels. Actinide contraction is observed in the series U–Np–Pu. It is manifested in a regular decrease in the interatomic distances in the An polyhedra, in parameters b and c, and in the unit cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号