首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
高P钢渣含P量偏高,掺入高P钢渣微粉的钢渣—水泥胶凝材料凝结时间偏长,且早期强度过低,使其使用受到很大的限制。试验采用Ca O和Na2SO4作为高P钢渣的活化剂,并进行了一系列的试验研究。结果表明:(1)适量的Ca O可以缩短高P钢渣微粉—水泥胶凝材料凝结时间,提高其各龄期强度;(2)Na2SO4对高P钢渣微粉—水泥胶凝材料凝结时间无显著影响,适量Na2SO4可以提高高P钢渣微粉—水泥胶凝材料的1d、3d强度,过量Na2SO4会降低高P钢渣微粉—水泥胶凝材料28d强度;(3)作为高P钢渣的活化剂,Ca O的适宜掺量为4%,Na2SO4的适宜掺量1%。  相似文献   

2.
钢渣对硅酸盐水泥水化硬化的影响研究   总被引:2,自引:0,他引:2  
研究了钢渣的掺量对硅酸盐水泥强度的影响,采用SEM和EDXA分析了水泥水化产物的形貌和微区化学成分,并用XRD对水泥水化产物的矿物组成进行了分析。结果表明,钢渣经细磨后活性有很大提高,当钢渣试样的比表面积为444.5m~2/kg时,其28d强度活性指标可达82.4%;钢渣的掺入会降低水泥的抗压强度,但随钢渣-硅酸盐水泥混合体系水化的全面进行,7d以后龄期的强度增长较快,至120d时混合水泥的净浆抗压强度已与纯硅酸盐水泥相差甚小;掺入钢渣后混合水泥水化产物的形貌与纯硅酸盐水泥的水化产物无明显差别,都有六方片状的Ca(OH)_2,CSH凝胶的形貌也与纯硅酸盐水泥的水化产物类似,所不同的是此种凝胶合有较多的含铁相;掺钢渣的混合水泥的水化产物主要有C_2SH(C)、AFt和Ca(OH)_2,但C_2SH(C)性质的确定还需要继续深入研究。  相似文献   

3.
施惠生  郭蕾 《水泥》2005,(7):1-4
研究了钢渣对水泥强度及体积膨胀率的影响,采用SEM和EDXA分析了水化产物的形貌和微区化学成分,并用XRD对水化产物的矿物组成进行了分析研究。研究结果表明,钢渣的掺入会降低水泥净浆的早期抗压强度,但随钢渣水化的进行,掺钢渣的水泥浆体7d以后的强度增长较快,至120d时净浆抗压强度已与纯硅酸盐水泥相近。掺钢渣的水泥的体积膨胀率比纯硅酸盐水泥的体积膨胀率大,钢渣水泥的体积膨胀率主要取决于钢渣中的fCaO含量。掺钢渣水泥的主要水化产物组成和形貌与纯硅酸盐水泥无明显差别,所不同的是C-S-H凝胶中有较多的铁相。掺钢渣水泥的水化产物主要有C2SH(C)、AFt和Ca(OH)2。  相似文献   

4.
采用XRD分析了掺入钢渣水泥的水化产物,并从标准稠度用水量、凝结时间、强度几方面论证了磨细钢渣对水泥水化性能的影响。结果表明:适度磨细的钢渣能减小水泥的标准稠度用水量,但过度磨细后会增加标准稠度用水量,凝结时间也有类似的结果;钢渣的最佳掺量为10%,此时28d强度达54.5MPa,物相主要为C2SH(C),AFt和Ca(OH)2,养护90d未见Aft向AFm转变。  相似文献   

5.
钢渣的冷却和处理方式对水硬活性的影响   总被引:8,自引:0,他引:8  
分析几种不同钢渣的化学成分和矿物组成,测试钢渣作混合材的水泥凝结时间和物理力学强度,结果表明:热泼法形成的块状钢渣内外部分的矿物成分和活性不同。冷却至室温的钢渣块喷水后,7d抗压强度损失 44.6%,28d抗压强度损失29%,湿热处理的钢渣比空气中冷却的钢渣活性低,湿热处理冷却速度越快,形成的硅酸盐矿物减少,钢渣活性越低。  相似文献   

6.
应用碳酸化技术对比表面积为287m2/g的钢渣粗粉进行预养护,进行制备大掺量钢渣水泥的试验研究.实验结果表明:(1)钢渣粗粉在温度74℃,相对湿度70%~90%,CO2气体浓度30%~40%的条件下,碳酸化养护270min后其w(f-CaO)由5.67%降至0.34%;钢渣中的大部分f-CaO转化为CaCO3晶体,而C3S及C2S基本未参与碳酸化反应.(2)由于碳酸化作用,钢渣中Ca的浸析浓度明显降低,钢渣的早期水化速度加快、早期水化活性提高.(3)应用碳酸化预养护后的钢渣粗粉制备的钢渣水泥,钢渣粗粉掺入量可达40%,3 d强度达20.6 MPa,28 d强度达44.7 MPa,并且压蒸安定性良好.  相似文献   

7.
钢渣水化产物的特性(英文)   总被引:2,自引:0,他引:2  
用X射线衍射分析、水化热的测量、化学结合水量的测定、孔结构的测定、扫描电镜观察及强度测试研究了钢渣的水化产物的特性。结果表明:钢渣硬化浆体中主要含有水化硅酸钙(C–S–H)凝胶、Ca(OH)2、惰性组分[RO相、铁酸二钙(C2F)和Fe3O4]和未水化的胶凝相[硅酸三钙(C3S)和硅酸二钙(C2S)];总体而言,钢渣的水化过程与水泥的水化过程相似;钢渣早期的水化速率远低于水泥,但钢渣后期,尤其是90d之后的水化速率高于水泥的。钢渣水化产生的C–S–H凝胶不具有良好的胶凝性能,凝胶之间的相互黏结也不牢固,因此钢渣砂浆的强度很低。  相似文献   

8.
转炉钢渣中物相易磨性及胶凝性的差异   总被引:3,自引:0,他引:3  
将钢渣粉磨后分级,得到7种不同粒径的试样,用x射线衍射仪分析了它们的矿物成分,研究了粗粒子试样在硅酸钠作用下的胶凝性,并以矿渣为参比样,比较研究了钢渣细粉与矿渣易磨性及胶凝性的差异,用扫描电子显微镜及X射线能谱仪分析了钢渣中硅酸盐矿物硅酸二钙(C3S)和硅酸二钙(C2S)的固溶组分.结果表明:钢渣中难磨组分为铁铝酸钙[Ca2(Al,Fe)205] 和镁铁相同溶体(MgO·2FeO),且它的水化反应活性很低;钢渣中C3S和C2S具有较好的易磨性,其易磨性比矿渣的略好,但其水化反应活性明显比矿渣的差,钢渣中的C3S和C2S固溶了较多的异离子;钢渣水化活性低是由于它所含的矿物Ca2(Al,Fe)2O5,MgO·2FeO无水硬性,C2S呈γ型,水硬性低,而C3S是在长时间高温下形成的,它具有较稳定的结构,其水化活性亦相对较低.  相似文献   

9.
碳酸化预养护钢渣制备钢渣水泥的性能试验研究   总被引:2,自引:0,他引:2  
应用碳酸化技术对比表面积287m2/kg的钢渣粗粉进行预养护,从而制备大掺量钢渣水泥,并对其性能进行了试验研究。试验结果表明,碳酸化钢渣的fCaO含量降低,水化活性提高。碳酸化预养护钢渣较未碳酸化的钢渣制备的钢渣水泥强度及安定性有显著提高;钢渣水泥的密度、比表面积、标准稠度用水量和凝结时间等基本物理量与碳酸化钢渣粗粉的掺入量有关;在满足水泥强度和压蒸安定性的条件下,碳酸化钢渣粗粉的掺量可达50%。  相似文献   

10.
张永娟  施惠生 《水泥》2001,(1):16-19
研究了用石灰石替代对单矿物C3S、C3A及硅酸盐水泥水化过程及性能的影响。结果表明,CaCO3对C3S、C3A的水化均有促进作用,并且在水化后期阶段与Ca(OH)2发生反应生成碱式碳酸钙。掺入硅酸盐水泥的CaCO3有一定的调凝作用,但对强度有不利影响。石灰石替代石膏的最佳值为20%-50%,这样,既能保证水泥有正常的凝结时间,又能使水泥强度发展较理想。  相似文献   

11.
钢渣和水泥具有相似的矿物组成,可以作为一种潜在的胶凝材料,然而钢渣掺量较高时并不利于混凝土早期性能的发展。以钢渣质量分数为30%的钢渣水泥基胶凝材料为研究对象,探讨纳米SiO2对其早期性能的影响。主要通过测量流动度、凝结时间和抗压强度评估物理力学性能,并利用微量热分析、X射线衍射(XRD)、差热分析(DSC-TG)等方法对掺有纳米SiO2的钢渣水泥基胶凝材料的水化过程和水化产物进行分析。结果表明,当纳米SiO2掺入的质量分数为3%时,纳米SiO2可充分发挥火山灰活性,消耗大量Ca(OH)2,同时由于纳米SiO2颗粒的结晶成核作用和微集料填充作用,促进了钢渣和水泥的水化,水化初期的放热速率有所提高,从而提高钢渣水泥基胶凝材料的力学性能,28 d的抗压强度提高了14.0%。  相似文献   

12.
钢渣的膨胀破坏与抑制   总被引:31,自引:1,他引:31  
肖琪仲 《硅酸盐学报》1996,24(6):635-640
利用XRD,DTG等分析方法研究了不同类型钢渣在各种水热条件下的水化产物及其膨胀怀,并探讨了抑制钢渣膨胀匠方法。实验结果表明,钢渣经水热处理后普遍有膨胀现象,其强度也不高;加入硅质材料可以降低钢渣的C/S比,使水化产物中的硬下石含量增加,耐压强度提高;SiO2和MgO在高温高压水热条件下可生成稳定的含镁水化物,阻碍方镁石的继续水化;砂的存在能够有效地抑制钢渣处理过程中产生的膨胀。本工作可为开发钢渣  相似文献   

13.
探讨以钢渣微细粉取代部分水泥的高强混凝土力学性能及抗渗透性能,并利用扫描电镜和压汞仪进行试验分析。研究表明:(1)在基准混凝土中掺10%的钢渣微细粉,能充分发挥其润滑、填充作用,明显提高混凝土的强度及抗渗透性能。(2)比表面积为453m^2/kg的矿物微细粉,可有效提高水化速度,从而对混凝土强度及坍落度有所贡献。(3)采用高效减水剂在提高混凝土抗压强度的同时,可有效改善混凝土的抗渗透性能。  相似文献   

14.
吴旻  谢胜华  葛根旺 《硅酸盐通报》2021,40(8):2640-2646
围绕钢渣再利用、钢渣矿渣复合材料强度提升及微观作用机理这3个问题,从无侧限抗压强度和劈裂强度两个指标分析混合料不同养护龄期下的宏观强度,同时进行XRD、SEM和热重分析等微观试验,探讨了在石灰激发作用下,钢渣矿渣基层材料的水化产物生成和强度变化内在机制。强度试验结果表明:当矿渣掺量在10%(质量分数)以内,石灰与矿渣的质量比在1∶1~1∶2时,混合材料各龄期的无侧限抗压强度和劈裂强度较高。微观试验结果表明:适量Ca(OH)2能够提高矿渣中SiO2的水化反应速率,从而提升复合材料早期强度。此外,水化反应生成钙矾石、粉煤灰及钢渣中惰性组分的细料填充作用也是材料早强增长的有利因素。而粉煤灰的火山灰效应和钢渣中C2S的持续水化反应则有助于复合材料后期强度的提升。  相似文献   

15.
宫晨琛  余其俊 《水泥》2009,(12):1-3
用电炉还原渣在高温重构的转炉钢渣作高活性钢渣胶凝材料,并探讨重构钢渣的水化进程、水化产物和力学性能。试验结果表明:重构钢渣的水化热曲线在水化13-35h都有不同程度的放热峰存在,而未重构钢渣水化72h未见任何放热峰。SEM照片清晰显示相较于未重构铜渣,重构钢渣水化产物数量更多,水化浆体结构更为致密。随着水化龄期的延长,重构钢渣水化XRD图谱中硅酸盐矿物特征峰明显降低,无定形的C—S—H含量提高。重构过程有效改善了钢渣的后期强度,掺重构钢渣水泥的抗压强度的活性指数最高达104.0%。  相似文献   

16.
碳酸化钢渣复合胶凝材料早期水化活性   总被引:4,自引:0,他引:4  
梁晓杰  叶正茂  常钧 《硅酸盐学报》2012,40(2):226-227,228,229,230,231,232,233
通过调节初始加水量控制钢渣的碳酸化效果(碳酸化质量增加率),利用胶砂强度试验法测定碳酸化钢渣的活性指数,以及分析硬化浆体矿物相和微观形貌,研究碳酸化钢渣水泥水化活性。结果表明:随着初始加水量的增加,碳酸化质量增加率先增加后降低;钢渣中的游离氧化钙(f-CaO)含量经碳酸化后,由3.92%降至1.11%;加水量为19%的钢渣经碳酸化后,生成15.95%的CaCO3;碳酸化质量增加率相同时,加水量为11.8%的碳酸化钢渣3、28d活性指数较21%加水量的分别高49%和5%。在初始加水量为19%时,碳酸化钢渣3、28d活性指数为最大值,较未碳酸化钢渣水化活性可提高97%和16%:碳酸化生成的CaC03与水泥中的C3A反应生成水合碳铝酸钙。  相似文献   

17.
钢渣安定性与活性激发的研究进展   总被引:14,自引:3,他引:11  
钢渣是炼钢过程中产生的废渣,高碱度钢渣中含有较多的C3S和C2S,因而具有一定的胶凝活性,可用于生产钢渣水泥.但高碱度钢渣中游离氧化钙含量较高,使钢渣水泥的安定性不良.必须对钢渣进行适当的处理,解决其安定性问题,并通过机械或化学的方法激发其活性.本文对钢渣膨胀的诱因与抑制措施、活性激发等问题进行了详细的探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号