首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
联合蚁群算法和PCNN的脑部MRI图像分割方法   总被引:4,自引:3,他引:1  
采用蚁群算法(ACO)联合脉冲耦合神经网络(PCNN)的脑部磁共振成像(MRI)图像分割方法。其中利用ACO解决了PCNN参数设置困难的问题,同时能够克服图像的低对比度和噪声对图像分割的影响,实现图像的精确分割。首先利用ACO的全局搜索能力,以图像信息熵与灰度期望值的和作为ACO的目标函数,对PCNN的3个关键参数β、αE和VE进行设定;然后基于PCNN简化模型,结合最大熵值准则对脑部MRI图像进行分割;最后对分割结果进行面积滤波,得到最终的分割结果。实验结果表明,本文方法能够实现脑部MRI图像的自动分割,具有较高的精度和较强的鲁棒性。对于没有噪声的图像,本文方法分割结果的平均正确提取率达到97.0%以上,平均错误提取率达到0.4%以下,平均杰卡德相似系数达到94.8%以上;对于添加了不同级别噪声的图像,本文方法的分割效果也优于FCM和自适应PCNN。  相似文献   

2.
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction  相似文献   

3.
Thalamus is an important neuro-anatomic structure in the brain. In this paper, an automated method is presented to segment thalamus from magnetic resonance images (MRI). The method is based on a discrete dynamic contour model that consists of vertices and edges connecting adjacent vertices. The model starts from an initial contour and deforms by external and internal forces. Internal forces are calculated from local geometry of the model and external forces are estimated from desired image features such as edges. However, thalamus has low contrast and discontinues edges on MRI, making external force estimation a challenge. The problem is solved using a new algorithm based on fuzzy C-means (FCM) unsupervised clustering, Prewitt edge-finding filter, and morphological operators. In addition, manual definition of the initial contour for the model makes the final segmentation operator-dependent. To eliminate this dependency, new methods are developed for generating the initial contour automatically. The proposed approaches are evaluated and validated by comparing automatic and radiologist's segmentation results and illustrating their agreement.  相似文献   

4.
Brain magnetic resonance imaging segmentation is accomplished in this work by applying nonparametric density estimation, using the mean shift algorithm in the joint spatial-range domain. The quality of the class boundaries is improved by including an edge confidence map, that represents the confidence of truly being in the presence of a border between adjacent regions; an adjacency graph is then constructed with the labeled regions, and analyzed and pruned to merge adjacent regions. In order to assign image regions to a cerebral tissue type, a spatial normalization between image data and standard probability maps is carried out, so that for each structure a maximum a posteriori probability criterion is applied. The method was applied to synthetic and real images, keeping all parameters constant throughout the process for each type of data. The combination of region segmentation and edge detection proved to be a robust technique, as adequate clusters were automatically identified, regardless of the noise level and bias. In a comparison with reference segmentations, average Tanimoto indexes of 0.90-0.99 were obtained for synthetic data and of 0.59-0.99 for real data, considering gray matter, white matter, and background.  相似文献   

5.
Fully automatic segmentation of the brain in MRI   总被引:24,自引:0,他引:24  
A robust fully automatic method for segmenting the brain from head magnetic resonance (MR) images has been developed, which works even in the presence of radio frequency (RF) inhomogeneities. It has been successful in segmenting the brain in every slice from head images acquired from several different MRI scanners, using different-resolution images and different echo sequences. The method uses an integrated approach which employs image processing techniques based on anisotropic filters and “snakes” contouring techniques, and a priori knowledge, which is used to remove the eyes, which are tricky to remove based on image intensity alone. It is a multistage process, involving first removal of the background noise leaving a head mask, then finding a rough outline of the brain, then refinement of the rough brain outline to a final mask. The paper describes the main features of the method, and gives results for some brain studies  相似文献   

6.
Image segmentation based on fuzzy connectedness using dynamic weights.   总被引:1,自引:0,他引:1  
Traditional segmentation techniques do not quite meet the challenges posed by inherently fuzzy medical images. Image segmentation based on fuzzy connectedness addresses this problem by attempting to capture both closeness, based on characteristic intensity, and "hanging togetherness," based on intensity homogeneity, of image elements to the target object. This paper presents a modification and extension of previously published image segmentation algorithms based on fuzzy connectedness, which is computed as a linear combination of an object-feature-based and a homogeneity-based component using fixed weights. We provide a method, called fuzzy connectedness using dynamic weights (DyW), to introduce directional sensitivity to the homogeneity-based component and to dynamically adjust the linear weights in the functional form of fuzzy connectedness. Dynamic computation of the weights relieves the user of the exhaustive search process to find the best combination of weights suited to a particular application. This is critical in applications such as analysis of cardiac cine magnetic resonance (MR) images, where the optimal combination of affinity component weights can vary for each slice, each phase, and each subject, in spite of data being acquired from the same MR scanner with identical protocols. We present selected results of applying DyW to segment phantom images and actual MR, computed tomography, and infrared data. The accuracy of DyW is assessed by comparing it to two different formulations of fuzzy connectedness. Our method consistently achieves accuracy of more than 99.15% for a range of image complexities: contrast 5%-65%, noise-to-contrast ratio of 6%-18%, and bias field of four types with maximum gain factor of up to 10%.  相似文献   

7.
This paper presents a fuzzy energy-based active contour model with shape prior for image segmentation. The paper proposes a fuzzy energy functional including a data term and a shape prior term. The data term, inspired from the region-based active contour approach proposed by Chan and Vese, evolves the contour relied on image information. The shape term inspired from Chan and Zhu’s work, defined as the distance between the evolving shape and a reference one, constrains the evolving contour with respect to the reference shape. To align the shapes, we exploit the shape normalization procedure which takes into account the affine transformation. In addition, to minimize the energy functional, we utilize a direct method to calculate the energy alterations. The proposed model therefore can deal with images with background clutter and object occlusion, improves the computational speed, and avoids difficulties associated with time step selection issue in gradient descent-based approaches.  相似文献   

8.
Image segmentation by histogram thresholding using fuzzy sets   总被引:16,自引:0,他引:16  
Methods for histogram thresholding based on the minimization of a threshold-dependent criterion function might not work well for images having multimodal histograms. We propose an approach to threshold the histogram according to the similarity between gray levels. Such a similarity is assessed through a fuzzy measure. In this way, we overcome the local minima that affect most of the conventional methods. The experimental results demonstrate the effectiveness of the proposed approach for both bimodal and multimodal histograms.  相似文献   

9.
模糊C-均值聚类算法是一种无监督图像分割技术,但存在着初始隶属度矩阵随机选取的影响,可能收敛到局部最优解的缺点。提出了一种粒子群优化与模糊C-均值聚类相结合的图像分割算法,根据粒子群优化算法强大的全局搜索能力,有效地避免了传统的FCM对随机初始值的敏感,容易陷入局部最优的缺点。实验表明,该算法加快了收敛速度,提高了图像的分割精度。  相似文献   

10.
为提高局部模糊聚类算法(WFLICM)对噪声图像 分割的抗噪性,克服模糊聚类图像分割算法对初 始聚类中心的敏感性及易陷入局部最优问题,在WFLICM算法的基础上提出一种基于粒子群 优化的融合 局部和非局部空间信息的模糊聚类图像分割算法(PSO-WMNLFCM)。首先,利用粒子群优化 算法的全局 寻优能力得到最优粒子,并以此粒子作为模糊聚类算法的初始聚类中心。其次,用像素的非 局部空间信息 替换模糊因子中的局部邻域值,产生新的目标函数。最后,由拉格朗日乘子法最小化目标函 数,得到隶属 度和聚类中心的更新公式,从而完成图像分割。仿真结果表明,PSO-WMNLFCM算法相比于 模糊局部聚 类(FLICM)算法、局部模糊权重(WFLICM)算法、非局部模糊聚类(NLFCM)算法、非局部模 糊聚类 (MNLFCM)算法、基于粒子 群的局部模糊聚类(PSO-FLICM)算法的划分系数提高了20.92%,20.51%,24.84%,1.44%,23.28%左右。  相似文献   

11.
Multidimensional Systems and Signal Processing - This paper aims at introducing a novel supervised feature extraction method to be used in small sample size situations. The proposed approach...  相似文献   

12.
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.  相似文献   

13.
This paper proposes an automated procedure for segmenting an magnetic resonance (MR) image of a human brain based on fuzzy logic. An MR volumetric image composed of many slice images consists of several parts: gray matter, white matter, cerebrospinal fluid, and others. Generally, the histogram shapes of MR volumetric images are different from person to person. Fuzzy information granulation of the histograms can lead to a series of histogram peaks. The intensity thresholds for segmenting the whole brain of a subject are automatically determined by finding the peaks of the intensity histogram obtained from the MR images. After these thresholds are evaluated by a procedure called region growing, the whole brain can be identified. A segmentation experiment was done on 50 human brain MR volumes. A statistical analysis showed that the automated segmented volumes were similar to the volumes manually segmented by a physician. Next, we describe a procedure for decomposing the obtained whole brain into the left and right cerebral hemispheres, the cerebellum and the brain stem. Fuzzy if-then rules can represent information on the anatomical locations, segmentation boundaries as well as intensities. Evaluation of the inferred result using the region growing method can then lead to the decomposition of the whole brain. We applied this method to 44 MR volumes. The decomposed portions were statistically compared with those manually decomposed by a physician. Consequently, our method can identify the whole brain, the left cerebral hemisphere, the right cerebral hemisphere, the cerebellum and the brain stem with high accuracy and therefore can provide the three dimensional shapes of these regions.  相似文献   

14.
The Watershed Transform (W.T.) is a usefull morphological tool that allows to distinguish complex structures that can not be processed with image processing conventional algoriths. The W.T. floods the image gradient topography from its local minima. These minima indicates the zones where the flooding starts in order to segment the image. The final result is a labeled image where each pixel belongs to a unique region. Gradient of textured images have irrelevant local minima with low contrast. This results in image sobresegmentation in most of the cases. To avoid sobresegmentation, unique object markers are defined. Markers definition, when objects have different texture, size or shape, requires complex solution highly dependent on each particular aplication. This paper propose an automatic marker definition method for the Watershed Transform using a Mandami fuzzy inference system. The proposed method is simple, robust and easily adaptable to diferent type of images.  相似文献   

15.
16.
In this paper, we present a novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) data and estimation of intensity inhomogeneities using fuzzy logic. MRI intensity inhomogeneities can be attributed to imperfections in the radio-frequency coils or to problems associated with the acquisition sequences. The result is a slowly varying shading artifact over the image that can produce errors with conventional intensity-based classification. Our algorithm is formulated by modifying the objective function of the standard fuzzy c-means (FCM) algorithm to compensate for such inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced by the labels in its immediate neighborhood. The neighborhood effect acts as a regularizer and biases the solution toward piecewise-homogeneous labelings. Such a regularization is useful in segmenting scans corrupted by salt and pepper noise. Experimental results on both synthetic images and MR data are given to demonstrate the effectiveness and efficiency of the proposed algorithm.  相似文献   

17.
郑伟  王洁  郝钰蓉  马泽鹏 《激光杂志》2022,43(1):184-191
针对现有磁共振常规扫描序列对于颅脑白质、灰质信号相近分辨不清,解剖病变欠佳,难以达到临床高精准诊断的需求,选用改进的BIRCH算法,首先将3维MRI体数据经过预处理,由灰度与梯度组成特征向量,然后利用Cophenet相关系数,确定最优参数---分支因子B、阈值T,最后通过定义可调节线段L,改进原BIRCH算法仅将数据样...  相似文献   

18.
利用模糊特征改进Snakes模型的图像分割   总被引:1,自引:1,他引:0  
利用模糊特征自适应地控制曲线法向力场改进参数主动轮廓模型,改进后的模型可以对弱边缘、无边缘区域和纹理图像进行分割。曲线法向力场加速了曲线收敛到目标区域边界,改进了抓取范围和提取凹区域的能力。对弱边缘图像、医学图像和纹理的分割实验表明,新方法具有良好的性能。  相似文献   

19.
This paper presents a novel fuzzy-segmentation method for diffusion tensor (DT) and magnetic resonance (MR) images. Typical fuzzy-segmentation schemes, e.g., those based on fuzzy C means (FCM), incorporate Gaussian class models that are inherently biased towards ellipsoidal clusters characterized by a mean element and a covariance matrix. Tensors in fiber bundles, however, inherently lie on specific manifolds in Riemannian spaces. Unlike FCM-based schemes, the proposed method represents these manifolds using nonparametric data-driven statistical models. The paper describes a statistically-sound (consistent) technique for nonparametric modeling in Riemannian DT spaces. The proposed method produces an optimal fuzzy segmentation by maximizing a novel information-theoretic energy in a Markov-random-field framework. Results on synthetic and real, DT and MR images, show that the proposed method provides information about the uncertainties in the segmentation decisions, which stem from imaging artifacts including noise, partial voluming, and inhomogeneity. By enhancing the nonparametric model to capture the spatial continuity and structure of the fiber bundle, we exploit the framework to extract the cingulum fiber bundle. Typical tractography methods for tract delineation, incorporating thresholds on fractional anisotropy and fiber curvature to terminate tracking, can face serious problems arising from partial voluming and noise. For these reasons, tractography often fails to extract thin tracts with sharp changes in orientation, such as the cingulum. The results demonstrate that the proposed method extracts this structure significantly more accurately as compared to tractography.  相似文献   

20.
《现代电子技术》2019,(11):59-63
针对模糊C-均值聚类算法易受初始聚类中心的影响而陷入局部极值的缺陷,提出基于分数阶粒子群的模糊聚类图像分割算法。利用分数阶微积分容易跳出局部极值的固有优势,将其引入粒子群的速度、位置更新进程,同时改进分数阶阶次的自适应调整机制并引入步长控制因子。实验结果表明,该算法与传统算法相比,具有更高的分割精度与更快的收敛速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号