首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proteinase responsible for bone collagen degradation in osteo-resorption was examined. The bone pit formation induced by parathyroid hormone (PTH) was markedly suppressed by leupeptin, E-64 and cystatin A, while no inhibition was observed by CA-074, a specific inhibitor of cathepsin B. Pig leucocyte cysteine proteinase inhibitor (PLCPI), a specific inhibitor of cathepsin L, and chymostatin, a selective inhibitor of cathepsin L, completely inhibited the pit formation. Cathepsin L activity in osteoclasts was much higher than the other cathepsin activities. Serum calcium in rats placed on a low calcium diet was decreased by treatment of E-64 or cystatin A, but not by CA-074. These findings suggest that cathepsin L is the main proteinase responsible for bone collagen degradation.  相似文献   

2.
Degradation of cyclin B was effectively suppressed when cells were treated with ALLN (N-acetylleucylleucylnorleucinal) which inhibits proteasome, calpain and cysteine proteinase cathepsins. In order to examine which protease degrades cyclin B, the effect of a cathepsin inhibitor, cystatin alpha, was investigated. The cystatin alpha gene was inserted into an inducible expression vector, pMSG, and transfected into NIH3T3 mouse fibroblasts. The expression of cystatin alpha was induced effectively in the transfected cells after treatment with dexamethasone. Overexpression of cystatin alpha resulted in an increase of the amount of cyclin B, suggesting that cysteine proteinase cathepsins might be involved in the degradation of cyclin B.  相似文献   

3.
The role of proteinases in renal proximal tubule (RPT) cellular death was examined using specific inhibitors of proteinases. Rabbit RPT suspensions were incubated with antimycin A for 1 h or tetrafluoroethyl-L-cysteine (TFEC) for 4 h in the absence or presence of the specific cysteine proteinase inhibitor L-trans-epoxysuccinyl-leucylamido (4-guanidino)butane (E-64), the serine proteinase inhibitors N-p-tosyl-L-lysine chloromethyl ketone (TLCK) or 3,4-dichloroisocoumarin (DCS), the serine and cysteine proteinase inhibitors leupeptin or antipain, or the aspartic proteinase inhibitor pepstatin. E-64 and pepstatin decreased lactate dehydrogenase (LDH) release, a marker of cell death, from RPT exposed either to antimycin A or TFEC. TLCK, DCS, leupeptin, or antipain did not decrease antimycin A- or TFEC-induced cell death. Bromohydroquinone- or t-butylhydroperoxide-induced cell death was not decreased by any of the proteinase inhibitors. Loss of lysosomal membrane potential, indicated by neutral red release, occurred prior to the onset of antimycin A-induced cell death. Extensive inhibition of lysosomal cathepsins B and L by E-64 was correlated with cytoprotection. However, E-64 was only protective after some cell death had occurred. These results suggest that lysosomal cysteine and aspartic proteinases, but not serine proteinases, play a role in RPT cell death induced by antimycin A or TFEC. The observation that E-64 was only protective after some cell death had occurred suggests that lysosomal cathepsins are released from dying cells and subsequently attack the remaining viable cells.  相似文献   

4.
The involvement of cysteine proteinases in the degradation of soft connective tissue collagen was studied in cultured periosteal explants. Using cysteine proteinase inhibitors that were active intracellularly or extracellularly (Ep453 and Ep475, respectively), it was shown that over-all collagen degradation, as measured by the release of hydroxyproline, decreased significantly on inhibition of the intracellular pool of cysteine proteinases by Ep453. This inhibitor also induced an accumulation of intracellular fibrillar collagen in fibroblasts, indicating a decreased degradation of phagocytosed collagen. The extracellular inhibitor, Ep475, had minor or no effects. Histochemical analysis using a substrate for the cysteine proteinases cathepsins B and L revealed a high level of enzyme activity, which was completely blocked in explants preincubated with a selective intracellular inhibitor of cathepsin B, Ca074-Me. Moreover, the cathepsin B inhibitor strongly affected collagen degradation, decreasing the release of hydroxyproline and increasing the accumulation of phagocytosed collagen. These effects were comparable or slightly stronger than those found with the general intracellular inhibitor (Ep453). Taken together, these data strongly suggest that intracellular cysteine proteinases, in particular cathepsin B, play an important role in the digestion of soft connective tissue collagen.  相似文献   

5.
The mechanism of degradation of fructose-1,6-bisphosphate aldolase from rabbit muscle by the lysosomal proteinase cathepsin B was determined. Treatment of aldolase with cathepsin B destroys up to 90% of activity with fructose 1,6-bisphosphate as substrate, but activity with fructose 1-phosphate is slightly increased. Cathepsin L, another lysosomal thiol proteinase, and papain are also potent inactivators of aldolase, whereas inactivation is not caused by cathepsins D or H even at high concentrations, or by cathepsin B inhibited by leupeptin or iodoacetate. The cathepsin-B-treated aldolase shows no detectable change in subunit molecular weight, oligomer molecular weight or subunit interactions. Cathepsin B cleaves dipeptides from the C-terminus of th aldolase subunits. Four dipeptides are released sequentially: Ala-Tyr, Asn-His, Ile-Ser and Leu-Phe, and a maximum of five additional dipeptides may be released. There are indications that this peptidyldipeptidase activity of cathepsin B may be an important aspect of its action on protein substrates generally.  相似文献   

6.
The human squamous cell carcinoma antigens (SCCA) 1 and 2 are tandemly arrayed genes that encode two high-molecular-weight serine proteinase inhibitors (serpins). Although these proteins are 92% identical, differences in their reactive site loops suggest that they inhibit different types of proteinases. Our previous studies show that SCCA2 inhibits chymotrypsin-like serine proteinases [Schick et al. (1997) J. Biol. Chem. 272, 1849-1855]. We now show that, unlike SCCA2, SCCA1 lacks inhibitory activity against any of the more common types of serine proteinases but is a potent cross-class inhibitor of the archetypal lysosomal cysteine proteinases cathepsins K, L, and S. Kinetic analysis revealed that SCCA1 interacted with cathepsins K, L, and S at 1:1 stoichiometry and with second-order rate constants >/= 1 x 10(5) M-1 s-1. These rate constants were comparable to those obtained with the prototypical physiological cysteine proteinase inhibitor, cystatin C. Also relative to cystatin C, SCCA1 was a more potent inhibitor of cathepsin K-mediated elastolytic activity by forming longer lived inhibitor-proteinase complexes. The t1/2 of SCCA1-cathepsin S complexes was >1155 min, whereas that of cystatin C-cathepsin complexes was 55 min. Cleavage between the Gly and Ser residues of the reactive site loop and detection of a stable SCCA1-cathepsin S complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that the serpin interacted with the cysteine proteinase in a manner similar to that observed for typical serpin-serine proteinase interactions. These data suggest that, contingent upon their reactive site loop sequences, mammalian serpins, in general, utilize their dynamic tertiary structure to trap proteinases from more than one mechanistic class and that SCCA1, in particular, may be involved in a novel inhibitory pathway aimed at regulating a powerful array of lysosomal cysteine proteinases.  相似文献   

7.
To examine localization of cysteine and aspartic proteinases, and ubiquitin in rat and human urinary bladders, immunocytochemistry was applied to the tissues. In semi-thin sections, immunoreactivity for cathepsins B and D was densely localized throughout epithelial layers of rats and humans, while that for cathepsins H and L was mainly localized in rat superficial and human intermediate cells. Immunoreactivity for cathepsin C was relatively high in rat and human epithelia, especially in humans. Immunoreactivity for ubiquitin was detected in rat and human epithelial cells. By electron microscopy, vesicular or heterogeneously dense lysosomes labeled with immunogold particles indicating cathepsin B were seen in rat and human epithelial cells; particularly, they often appeared near fusiform vesicles in rat superficial cells and in human intermediate and superficial cells. By double immunostaining, lysosomes with or without vesicular structures were co-labeled with immunogold particles showing both cathepsin B and ubiquitin. The results suggest that cathepsins B, C, H, and L, and cathepsin D are involved in the lysosomal system of rat and human bladder epithelia. Moreover, considering that ubiquitin is a cofactor in the soluble ATP-dependent proteolysis, the results may also indicate that epithelial cells actively form autophagolysosomes.  相似文献   

8.
The lysosomal cysteine proteinase cathepsin B is shown to be secreted by ten human colon carcinoma cell lines and to accumulate in culture media as a latent enzyme. The cell lines also secrete a physiological inhibitor of cathepsin B, cystatin C. A significant correlation was found between secretion of the latent enzyme and the inhibitor (r = 0.755, P < 0.01). The aim of the present study was to modulate the respective secretion of the two antagonists to test whether or not latency of cathepsin B was due to the concomitant secretion of the inhibitor. SW480 colon carcinoma cells were treated with the acidotropic agent ammonium chloride, phorbol 12-myristate 13-acetate, and the inflammatory cytokines TGF-beta, TNF-alpha, and IL-1 beta. Ammonium chloride significantly increased latent cathepsin B levels without affecting the constitutive secretion of cystatin C. Phorbol 12-myristate 13-acetate induced a 4- to 5-fold increase in secreted latent cathepsin B, but did not alter significantly the accumulation of cystatin C in media. The cytokines, TGF-beta, TNF-alpha, and IL-1 beta, had no major effect on the expression of these two antagonists. Latent cathepsin B released from human carcinoma cells could be efficiently activated by neutrophil elastase at neutral pH. It is concluded that latent cathepsin B is a true proenzyme rather than an enzyme-inhibitor complex. In addition, our data from neutrophil elastase activation experiments indicate that a proteolytic system for activation of the tumor cell-secreted latent enzyme may exist in vivo.  相似文献   

9.
Advanced glycation end-products (AGEs) are assumed to play a major role in the genesis of diabetic nephropathy and other diabetic complications. We studied the potential effect of AGEs on protein turnover and lysosomal proteinase activities in LLC-PK1 cells, a pig kidney proximal tubules cell line. Advanced glycated bovine serum albumin (AGE-BSA) was used as a model of AGEs and its action was compared to that of nonglycated BSA. AGE-BSA but not BSA (50 micromol/l) induced a significant increase in cell volume (BSA: 4870.6 +/- 74.8 fl, AGE-BSA: 5718.0 +/- 20.7 fl, p<0.01). Protein degradation rate was decreased by 13.8% after 48 hrs. incubation with AGE-BSA (p<0.01) while protein synthesis increased by 19,1%, (p<0.01). After incubation with AGE-BSA but not BSA activities of lysosomal cathepsins (B, L+B and H) decreased in a time- and dose-dependent fashion. This decline was neither caused by a shift in lysosomal pH outside the optimal range for cathepsins, nor by a direct inhibitory effect of AGEs modified proteins or peptides but most probably by inhibition of cathepsin B expression as measured by RT-PCR. It is supposed that impaired protease activities participated in decreased protein breakdown and cell enlargement. For the first time our data provide the evidence that AGEs induce hypertrophy of LLC-PK1 cells due to decreased protein breakdown resulting from reduced lysosomal proteinase activities with a concomitant stimulation of protein synthesis.  相似文献   

10.
AIM: To study the interaction between the human cysteine proteinase inhibitor, cystatin C, and proteinases of periodontitis associated bacteria. METHODS: Gingival crevicular fluid samples were collected from discrete periodontitis sites and their cystatin C content was estimated by enzyme linked immunosorbent assay (ELISA). The interaction between cystatin C and proteolytic enzymes from cultured strains of the gingival bacteria Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans was studied by measuring inhibition of enzyme activity against peptidyl substrates, by detection of break down patterns of solid phase coupled and soluble cystatin C, and by N-terminal sequence analysis of cystatin C products resulting from the interactions. RESULTS: Gingival crevicular fluid contained cystatin C at a concentration of approximately 15 nM. Cystatin C did not inhibit the principal thiol stimulated proteinase activity of P gingivalis. Instead, strains of P gingivalis and P intermedia, but not A actinomycetemcomitans, released cystatin C modifying proteinases. Extracts of five P gingivalis and five P intermedia strains all hydrolysed bonds in the N-terminal region of cystatin C at physiological pH values. The modified cystatin C resulting from incubation with one P gingivalis strain was isolated and found to lack the eight most N-terminal residues. The affinity of the modified inhibitor for cathepsin B was 20-fold lower (Ki 5 nM) than that of full length cystatin C. A 50 kDa thiol stimulated proteinase, gingipain R, was isolated from P gingivalis and shown to be responsible for the Arg8-bond hydrolysis in cystatin C. The cathepsin B inhibitory activity of cystatin C incubated with gingival crevicular fluid was rapidly abolished after Val10-bond cleavage by elastase from exudate neutrophils, but cleavage at the gingipain specific Arg8-bond was also demonstrated. CONCLUSIONS: The physiological control of cathepsin B activity is impeded in periodontitis, owing to the release of proteinases from infecting P gingivalis and neutrophils, with a contribution to the tissue destruction seen in periodontitis as a probable consequence.  相似文献   

11.
The importance of regulating the cellular concentrations of the myristoylated alanine-rich C kinase substrate (MARCKS), a major cellular substrate of protein kinase C, is indicated by the fact that mice lacking MARCKS exhibit gross abnormalities of central nervous system development and die shortly after birth. We previously identified a novel means of regulating cellular MARCKS concentrations that involved a specific proteolytic cleavage of the protein and implicated a cysteine protease in this process (Spizz, G., and Blackshear, P. J. (1996) J. Biol. Chem. 271, 553-562). Here we show that p40, the carboxyl-terminal fragment resulting from this cleavage of MARCKS, was associated with the mitochondrial/lysosomal pellet fraction of human diploid fibroblasts and that its generation in cells was sensitive to treatment with NH4Cl. These data suggest the involvement of lysosomes in the generation and/or stability of p40. The MARCKS-cleaving enzyme (MCE) activity was peripherally associated with a 10,000 x g pellet fraction from bovine liver, and it co-purified with the activity and immunoreactivity of a lysosomal protease, cathepsin B. Cathepsin B catalyzed the generation of p40 from MARCKS in a cell-free system and behaved similarly to the MCE with respect to mutants of MARCKS previously shown to be poor substrates for the MCE. Treatment of fibroblasts with a cell-permeable, specific inhibitor of cathepsin B, CA074-Me, resulted in parallel time- and concentration-dependent inhibition of cathepsin B and MCE activity. Incubation of a synthetic MARCKS phosphorylation site domain peptide with purified cathepsin B resulted in cleavage of the peptide at sites consistent with preferred cathepsin B substrate sites. These data provide evidence for the identity of the MCE as cathepsin B and suggest that this cleavage most likely takes place within lysosomes, perhaps as a result of specific lysosomal targeting sequences within the MARCKS primary sequence. The data also suggest a direct interaction between MARCKS and cathepsin B in cells and leave open the possibility that MARCKS may in some way regulate the protease for which it is a substrate.  相似文献   

12.
Peptidyl (acyloxy)methyl ketones (Z-Aa-Aa-CH2-O-CO-R), a new class of irreversible inhibitors whose chemical reactivity can be modulated by varying the substitution pattern of the carboxylate leaving group, are shown to be extremely potent inactivators of the lysosomal cysteine proteinases cathepsin L and cathepsin S. The highest k2/Ki values measured were found to exceed 10(6) M-1s-1 for both cathepsin L and cathepsin S. The rate of inactivation can be controlled by varying the dipeptidyl moiety or the carboxylate leaving group, with the second-order rate constants for both enzymes found to be strongly dependent on the pKa values of the leaving group. The specificities of the cathepsins S and L reveal a different selectivity towards the nature of substitution of the aryl P' leaving group of the inhibitor. This new inhibitor class opens the possibility of the design of selective and specific inhibitors for lysosomal cysteine proteinases.  相似文献   

13.
Specific catalytic activities of cysteine proteinases including cathepsins B (EC 3.4.22.1) and L (EC 3.4.22.15) in human melanoma cell lines SK-MEL-28, SK-MEL-30, MEL-HO and in fibroblasts of different origin are reported. Cell line-specific pH profiles of these cysteine proteinases were determined fluorometrically with benzyloxycarbonyl-phenylalanyl-arginine-amidomethylcoumarine (Z-Phe-Arg-AMC) under saturated conditions. Single activities of cathepsins B and L were inactivated by urea and by benzyloxycarbonyl-phenylalanyl-phenylalanine-diazomethylketone (Z-Phe-Phe-CHN2) in order to describe the activities of these enzymes separately. The melanoma cell line MEL-HO, which originated from a primary lesion, showed highest activity of an unknown cysteine proteinase. This enzyme is not inactivated by urea and Z-Phe-Phe-CHN2 and has a Michaelis constant (K(M) value) of approximately 1 mM. The specific characteristics suggest that it is a tumor-associated cathepsin B. In addition, high invasive subpopulations of SK-MEL-28 and SK-MEL-30 cell lines isolated by an invasion assay showed higher proteinase activities than the low invasive subpopulations. Furthermore, in fibroblasts originating from melanoma tissue cysteine proteinase activities were increased compared to normal skin fibroblasts. In conclusion, these results indicate that these cysteine proteinases shown here are tumor-associated proteinases, possibly facilitating invasion and dissemination of melanoma cells.  相似文献   

14.
15.
Cystatin CsC, a cysteine proteinase inhibitor from chestnut (Castanea sativa) seeds, has been purified and characterized. Its full-length cDNA clone was isolated from an immature chestnut cotyledon library. The inhibitor was expressed in Escherichia coli and purified from bacterial extracts. Identity of both seed and recombinant cystatin was confirmed by matrix-assisted laser desorption/ionization mass spectrometry analysis, two-dimensional electrophoresis and N-terminal sequencing. CsC has a molecular mass of 11,275 Da and pI of 6.9. Its amino acid sequence includes all three motifs that are thought to be essential for inhibitory activity, and shows significant identity to other phytocystatins, especially that of cowpea (70%). Recombinant CsC inhibited papain (Ki 29 nM), ficin (Ki 65 nM), chymopapain (Ki 366 nM), and cathepsin B (Ki 473 nM). By contrast with most cystatins, it was also effective towards trypsin (Ki 3489 nM). CsC is active against digestive proteinases from the insect Tribolium castaneum and the mite Dermatophagoides farinae, two important agricultural pests. Its effects on the cysteine proteinase activity of two closely related mite species revealed the high specificity of the chestnut cystatin.  相似文献   

16.
Apoptosis, a naturally occurring programmed cell death or cell 'suicide', has been paid much attention as one of the critical mechanisms for morphogenesis and tissue remodeling. Activation of cysteine aspartases (caspases) is one of the critical steps leading to apoptosis. Although a mitochondria-mediated pathway has been postulated to be one of the activation mechanism of caspase-3, another subcellular compartment might be involved in the activation of the enzyme. The present study shows that the supernatant fraction of digitonin-treated lysosomes strongly activates Ac-DEVD-CHO inhibitable caspase-3-like protease. Activation of caspase-3-like protease by digitonin-treated lysosomal fractions was specifically suppressed by leupeptin and E-64, inhibitors of cysteine protease. These results indicate that leakage of lysosomal cysteine protease(s) into the cytosolic compartment might be involved in the activation of caspase-3-like protease.  相似文献   

17.
Strong evidence indicates that virions of mammalian reoviruses undergo proteolytic processing by acid-dependent cellular proteinases as an essential step in productive infection. Proteolytic processing takes the form of a series of cleavages of outer-capsid proteins final sigma3 and mu1/mu1C. Previous studies showed an effect of both NH4Cl and E-64 on these cleavages, indicating that one or more of the acid-dependent cysteine proteinases in mammalian cells (cathepsins B and L, for example) is required; however, these studies did not address whether acid-dependent aspartic proteinases in those cells (cathepsin D, for example) may also be required. To determine the role of aspartic proteinases in reovirus entry, studies with pepstatin A, a specific inhibitor of aspartic proteinases, were performed. The results showed that pepstatin A neither blocks nor slows reovirus infection of L or MDCK cells. Experiments using ribonuclease A and other proteins as cleavable substrates showed that cathepsin-D-like proteinases from these cells are inhibited within the tested range of pepstatin A concentrations both in vitro and within living cells. In other experiments, virion-bound final sigma3 protein was shown to be a poor substrate for cleavage by cathepsin D in vitro, consistent with the findings with inhibitors. In sum, the data indicate that cathepsin-D-like aspartic proteinases provide little or no activity toward proteolytic events required for infection of L or MDCK cells with reovirus virions.  相似文献   

18.
A 7-, 14-, and 21-day course of injections of the lysosomotropic drug chloroquine in a dose of 50-mg/kg per day causes a more than two-fold decrease of T3 concentration and insignificant changes in the level of T4 and thyrotropin in the blood serum of rats. In the series with 14- and 21-day courses of chloroquine injections, inhibition of the thiol cathepsins B and L with simultaneous activation of the aspartic proteinase cathepsin D occurred. Permeability of the lysosomal membranes for all hydrolases under study considerably increased after a 7-day course of chloroquine but reduced subsequently to the control level in longer treatment. The possible mechanisms of changes in the spectrum of lysosomal proteinases and functional activity of the thyroid are discussed.  相似文献   

19.
We investigated whether cystatins and cystatin-derived peptides, encompassing sequences of secondary structures of cystatin S and papain binding domains of cystatin C, display antimicrobial properties. Of the different microorganisms tested, only the growth of P. gingivalis was inhibited by chicken cystatin and cystatin C. Cystatin S, cystatin S:1-14, cystatin S:61-73 and cystatin S:108-121 also inhibited its growth, whereas cystatin S:21-38, cystatin S:39-55, cystatin S:81-95, cystatin S:94-109, and cystatin C: 9-12/55-60/106-107 did not. No inhibition of the cysteine proteinase activity of P. gingivalis was observed for all cystatin-derived peptides. On the other hand, leupeptin and antipain inhibited P. gingivalis proteinase activity, but had no effect on the growth. These data suggest that cystatins contain antibacterial sequences active against P. gingivalis and that the growth inhibition does not depend on the inhibition of P. gingivalis cysteine proteinases.  相似文献   

20.
We investigated the co-localization of lysosomal cathepsins B, H and L, and horseradish peroxidase (HRP) in junctional epithelial (JE) cells both as a fluid-phase endocytotic marker to demonstrate the fluid-phase endocytotic capacity of JE cells, and to understand the morphological relationships of the endocytosed foreign substances to lysosomal cathepsins in these cells. The diaminobenzidine (DAB) histochemical and cytochemical methods and immunohistochemical avidin-biotin-peroxidase complex and immunocytochemical post-embedding colloidal gold methods were used. Under light microscopy, DAB reaction products based on HRP were found in JE but were rare or absent in the oral sulcular epithelium and oral epithelium. Immunolabeling for cathepsins B and H was found in the granular structures of the cells, but no cathepsin L was identified. With electron microscopy, DAB reaction products, which indicated both HRP and the azurophil granules of neutrophils, were endocytosed into JE cells. Using a post-embedding technique, gold particles indicating HRP were present on the plasma membrane of JE cells, at the periphery of electronlucent vacuoles, and in the electrondense granules. Gold particles indicating cathepsin B or H were found in the electrondense granules. With different sizes of colloidal golds, the co-localization of cathepsin B or H with HRP was indicated only in the electrondense portion of the larger vacuoles consisting of electronlucent and -dense parts. This study provided the first morphological data which indicate that JE has a fluid phase endocytotic capacity, and which suggest that the lysosomal cathepsins B and H are involved in the intracellular degradation of foreign substances invading through the gingival sulcus in JE cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号