首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Platelike CaTiO3 particles with an orthorhombic perovskite structure have been synthesized by topochemical microcrystal conversion (TMC) from platelike precursor particles of the layer-structured CaBi4Ti4O15 at 950 °C. The CaTiO3 particles inherited and retained the shape of the precursor particles with a thickness of approximately 0.3 μm, and a width of 2–6 μm. XRD analysis showed that in the TMC reaction, the crystallographic {0 0 1} plane of CaBi4Ti4O15 is converted into the {1 0 0} plane of CaTiO3. Using the platelike CaTiO3 particles as templates in the templated grain growth method, dense {1 0 0} grain-oriented CaTiO3 ceramics having a {1 0 0} orientation could be fabricated at sintering temperatures between 1350 and 1500 °C. The maximum orientation factor reached 99.7% at 10% of template. It was found that texturing improves microwave dielectric low-loss properties, providing a 1.55 times higher Qf value of 9310 GHz in textured ceramics compared to that of 6005 GHz in non-textured ceramics.  相似文献   

2.
An organic precursor synthesis of 8 mol% yttria stabilized zirconia (YSZ) powder from Zr–Y composite nitrate solution and sucrose has been studied. Oxidation of sucrose in Zr–Y composite nitrate solution containing excess nitric acid in situ generates hydroxy carboxylic acids that forms a white sol which showed peaks at 1640 cm−1 and 1363 cm−1 in IR spectrum corresponding to hydroxy carboxylic acid complexes of Zr and Y. Precursor mass obtained by drying the sol on calcinations at 600 °C produced loosely agglomerated particles of cubic YSZ. Deagglomerated YSZ contain submicron particles with D50 value of 0.5 μm and the particles are aggregates of nanocrystallites of nearly 10 nm size. Compacts prepared by pressing the YSZ powder sintered to 96.7% TD at 1450 °C. The sintered YSZ ceramic showed an average grain size of 2.2 μm.  相似文献   

3.
An extensive series of 30 Cu exchanged zeolites and Cu impregnated silicas and aluminas have been tested in their capacities to stabilize the bis(μ-oxo)dicopper core. This core shows a remarkably activity towards methane, as it selectively hydroxylates methane into methanol at the low temperature of 125 °C. UV–vis spectroscopy is an easy approach to detect the presence of this bis(μ-oxo)dicopper core since it is characterized by an intense charge transfer band at 22 700 cm−1. In this way it was found that after calcination, only the Cu exchanged zeolites ZSM-5 and MOR are capable of stabilizing this core. In addition, an optimum in the Si/Al ratio and in the calcination temperature were observed, indicating that this core requires a rather specific coordination environment. For ZSM-5, the optimal Si/Al ratio for bis(μ-oxo) dicopper core formation is between 12 and 30 and the amount of this core increases with increasing copper loading above Cu/Al = 0.2. Calcination in O2 should be done at temperatures higher than 280 °C and lower than 700 °C. After reaction with methane at low temperature (150 °C), it was found that only Cu-ZSM-5 and Cu-MOR yielded methanol, whereas all the other Cu based materials yielded almost no methanol. At higher temperatures (200 °C) however, Cu-FER and Cu-BEA showed comparable methanol yields as Cu-ZSM-5 and also the methanol yield of Cu-MOR increased at this higher reaction temperature, indicating that a second not yet identified Cu-oxygen species is activated in the FER, BEA and MOR zeolites at higher temperatures.  相似文献   

4.
Fully dense composites of 0–30 wt% discrete TiN particles distributed in a ß-sialon matrix of overall composition Si5·5Al0·5O0·5N7·5 have been prepared by hot isostatic pressing at 1650 and 1750°C. Pressureless sintering at 1775°C gave materials with an open porosity. Typical sizes of the TiN particles were 1–3 μm, and no intergranular glassy phase was observed in the prepared materials. The grain size of ß-sialon was below 1 μm in the materials HIPed at 1650°C, and 1–2 μm at 1750°C. The Vickers hardness was fairly constant for the TiN-ß-sialon composites with up to 15 wt% TiN added: Hv10 around 17·5 GPa for materials HIPed at 1650° and around 17 GPa at 1750°C, whereas at higher TiN contents the hardness decreased to around 16 GPa. The indentation fracture toughness of the ß-sialon ceramic increased approximatively from 3 to 4 MPam1/2 at an addition of 15 wt% TiN particulates. The fracture toughness could be further increased to 5 MPam1/2 by addition of small amounts of Y2O3 and A1N to a ß-sialon composite with 30 wt% TiN.  相似文献   

5.
Sodium-doped hydroxylapatite powder was synthesized by the wet chemical method. Powder behavior, thermal stability, mechanical strength and biocompatibility were investigated.

The synthesized hydroxylapatite powder consisted of needles 1800 Å in width and 260 Å in length. The particle size, specific area (BET) and Ca/P atomic ratio were 0·1–0·3 μm, 29·9 m2/g and 1·62 respectively. A large amount of absorbed water existed in the powder, and evaporated on heating to 1000°C. Differential thermal analysis showed that no phase transformation occurred during heating to 1250°C. After heating at 1250°C for 1 h, the O---H bond was still found in the synthesized powder, by IR spectrophotometry. The optimum sintering condition was heating at 1200°C for 4 and this resulted in 680 MPa compressive strength, 1-1·3 μm mean grain size and 99% T.D.

The synthesized hydroxylapatite showed no cytotoxicity and had excellent tissue compatibility. This powder possesses a high potential for bone implantation.  相似文献   


6.
Powders of pure and 5% ytterbium substituted strontium cerate (SrCeO3/SrCe0.95Yb0.05O3−δ) were prepared by spray pyrolysis of nitrate salt solutions. The powders were single phase after calcination in nitrogen atmosphere at 1100 °C (SrCeO3) and 1200 °C (SrCe0.95Yb0.05O3−δ). Dense SrCeO3 and SrCe0.95Yb0.05O3−δ materials were obtained by sintering at 1350–1400 °C in air. Heat treatment at 850 and 1000 °C, respectively, was necessary prior to sintering to obtain high density. The dense materials had homogenous microstructures with grain size in the range 6–10 μm for SrCeO3 and 1–2 μm for SrCe0.95Yb0.05O3−δ. The electrical conductivity of SrCe0.95Yb0.05O3−δ was in good agreement with reported data, showing mixed ionic–electronic conduction. The ionic contribution was dominated by protons below 1000 °C and the proton conductivity reached a maximum of 0.005 S/cm above 900 °C. In oxidizing atmosphere the p-type electronic conduction was dominating above 700 °C, while the contribution from n-type electronic conduction only was significant above 1000 °C in reducing atmosphere.  相似文献   

7.
The X1 type Y2SiO5:Tb phosphor particles with high brightness were prepared by spray pyrolysis from spray solution with NH4F flux material. The phosphor particles prepared by spray pyrolysis at high preparation temperature had spherical shape, fine size and dense morphology. The mean sizes of the phosphor particles prepared at 900 and 1650 °C were 1.3 and 0.9 μm. The emission spectrum of the phosphor particles prepared by spray pyrolysis at 1650oC had the characteristics of X1 type Y2SiO5:Tb phosphor. The photoluminescence intensity of the phosphor particles directly prepared by spray pyrolysis from spray solution with 20 wt.% NH4F flux of the product at temperature of 1650 °C was 127 and 184% of the X1 and X2 type Y2SiO5:Tb phosphor particles post-treated at 1100 and 1300 °C, respectively. The Y2SiO5:Tb phosphor particles prepared by spray pyrolysis at 1650 °C had X1 type crystal structure because of short residence time of particles inside hot wall reactor of 0.4 s.  相似文献   

8.
Experiments were performed with two model soot aerosols brought into different forms of contact with Pt aerosol particles, to investigate the effectiveness of this contact in lowering the catalytic soot oxidation temperature. The contact was either generated between individual particles in the aerosol state (Pt-doped soot to simulate a fuel borne catalyst), or by sequential or simultaneous deposition of separately generated soot and Pt aerosols onto a sintered metal filter. (Formation of a soot cake on previously deposited Pt aerosol would simulate a catalyst coated diesel particle filter.) The catalytic activity was determined in all cases from temperature ramped oxidation in air of the filtered particles, and defined as the 50% conversion temperature.

It was found that Pt-doped soot and simultaneously filtered aerosols were both equally effective in reducing the oxidation temperature by up to 140–250 °C for the spark discharge soot (with 3–47 wt% Pt concentration in the soot cake), and by up to 140 °C for the pyrolysis soot (3 wt% Pt). Conversely, the deposition of a thin soot layer of 5–10 μm thickness onto Pt, or vice versa, produced only a slight temperature reduction on the order of about 13–42 °C. These results suggest that the distance between soot and Pt particles plays a key role in promoting an effective oxidation on the filter, which is consistent with the role of Pt particles as local generators of activated oxygen.  相似文献   


9.
A refractory material was elaborated from kaolin extracted from the region of Djebel Debbagh (Algeria). Kaolin grog was obtained by calcination at a temperature of 1350 °C during 1 h. It was used as aggregates with granulometric distribution composed of fine fraction (mean grain size: 100–250 μm) and coarse fraction (mean grain size: 1000–2500 μm). Crude kaolin (size < 75 μm) was also used as a binder with an amount representing 15% of the dry material. After a 9.28% moistening and a rotting of 1 day, cylindrical samples were shaped by uniaxial pressure at 80 MPa. The samples were submitted to a natural drying during 24 h, a stoving at 100 °C and a calcination at 600 °C during 1 h. They were fired at high temperatures between 1250 and 1450 °C.

An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite and silica. Silica is a mixture of a vitreous phase and cristobalite at 1300, 1350 and 1400 °C and becomes completely amorphous when the samples are fired at higher temperature (1450 °C). The sample porosity is about 30%. The mechanical tests carried out as a function of temperature revealed different behaviours of the material. From the ambient up to 600 °C, the refractory behaviour is pseudo-plastic caused by micro-cracking. Between 700 and 900 °C, the samples become more rigid. At 1000 °C, the material exhibits a visco-plastic behaviour. The amorphous phase governs the sample properties variation with temperature increasing. Its content varies between 28% and 34% according to the firing temperature. Thermal shock tests realized in water showed that the refractory samples present good thermal shock resistance.  相似文献   


10.
Thermal conductivity of nanocomposites based on diamonds and nanodiamonds   总被引:1,自引:0,他引:1  
The thermal conductivity of composites sintered from natural microdiamond (5–7 and 10–14 μm) and nanodiamond powders under pressure of  6.0 to 6.5 GPa at the temperature  1000 to 2000 °C for 6–20 s was measured in a steady heat flow in the temperature range of 50–200 °C. It was found that the thermal conductivity of nanodiamond composites produced in these conditions was less than 10 W/(mК) while that of natural microdiamonds was as high as 500 W/(mК).  相似文献   

11.
The structure and density of individual ammonium chloride particles formed at 0 and −20°C by homogeneous nucleation were studied using electron microscopy and X-ray diffraction. The crystal size apparently increased at the lower temperature and many of the particles formed at −20°C were single crystals or had an oriented polycrystalline structure. These results differ from those reported previously for particles formed at room temperature (23–26°C), which showed an amorphous or randomly-oriented fine crystal structure. Coagulation was more frequently observed as the temperature decreased and the porosity present in the particles appeared to be much finer and more uniform. The density of these particles decreased from about 0.26 g cm−3 for particles of size 0.1–0.2 μm to approximately 0.1 g cm−3 for particles slightly smaller than 1 μ.  相似文献   

12.
Engelhard titanosilicate (ETS-4) was successfully synthesized by microwave heating at 235 °C within 50 min. ETS-4 was synthesized using titanium(IV) butoxide as the titanium source. Microwave irradiation shortened the synthesis time considerably as compared to conventional heating which resulted in the rapid synthesis of ETS-4 in less than 1 h compared to 36–48 h for the traditional synthesis. Pulsed laser deposition and microwave treatment was also studied for the preparation of ETS-4 films on alumina.  相似文献   

13.
The nitridation of elemental silicon powder at 900–1475 °C was studied by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger electron spectroscopy (XAES), XRD, thermal analysis and 29Si MAS NMR. An initial mass gain of about 12% at 1250–1300 °C corresponds to the formation of a product layer about 0·2 μm thick (assuming spherical particles). XPS and XAES show that in this temperature range, the surface atomic ratio of N/Si increases and the ratio O/Si decreases as the surface layer is converted to Si2N2O. XRD shows that above 1300 °C the Si is rapidly converted to a mixture of - and β-Si3N4, the latter predominating >1400 °C. In this temperature range there are only slight changes in the composition of the surface material, which at the higher temperatures regains a small amount of an oxidised surface layer. By contrast, in the interval 1400–1475 °C, the 29Si MAS NMR chemical shift of the elemental Si changes progressively from about −80 ppm to −70 ppm, in tandem with the growth of the Si3N4 resonance at about −48 ppm. Possible reasons for this previously unreported change in the Si chemical shift are discussed. ©  相似文献   

14.
The formation of mesoporous spherical titania particles via hydrolysis of pure titanium tetra-isopropoxide in n-heptane solution upon the application of a slow stirring rate is described. Calcination of the dry hydrolysis product produced pure anatase at 400–600°C, and rutile at 800°C. Nitrogen adsorption results indicate high surface area (SBET 132 m2/g) and uniform mesopores peaking at 10 nm for the material calcined at 400°C. Upon calcination at 600°C, the pore size remained at 10 nm, whereas the SBET value was decreased. The material calcined at 400°C was found by scanning electron microcopy to be shaped into spherical particles about 2 μm in diameter. Sizes of the spherical particles were unchanged at 400°C and up to 800°C. This was ascribed to the spherical morphology of the particles which prevented primary particles from growing beyond the boundary of the host aggregate even when the rutile phase transition occurred at 800°C.  相似文献   

15.
The dielectric and ferroelectric properties of lead indium niobate (Pb(In1/2Nb1/2)O3, PIN) ceramic prepared by an oxide-mixing method via wolframite route were investigated. The 98.5% perovskite fine-grained PIN ceramics with average grain sizes of 1–2 μm were obtained by sintering at 1050 °C for 2 h. The dielectric properties of the PIN were of relaxor ferroelectric behavior with temperature of dielectric maximum (Tm) 53 °C and dielectric constant (r) 4300 (at 1 kHz). The PE hysteresis loop measurements at various temperatures showed that the ferroelectric properties of the PIN ceramic changed gradually from the paraelectric behavior at temperature above Tm to slim-loop type relaxor behavior at temperature below Tm. Moreover, the PE loop became more open at temperatures much lower than Tm. At −25 °C, the maximum polarization is found to be 8 μm/cm2 at a field of 30 kV/cm, with Pr value of 2.5 μm/cm2 and Ec of +7.5 kV/cm.  相似文献   

16.
Mesoporous and conventional Fe-containing ZSM-5 and ZSM-12 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnation method and tested in the selective catalytic reduction (SCR) of NO with NH3. It was found that for both Fe/HZSM-5 and Fe/HZSM-12 catalysts with similar Fe contents, the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally, the influence of different pretreatment conditions on the catalytic activity was studied and interestingly, it was found that it is possible to increase the SCR performance significantly by preactivation of the catalysts in a 1% NH3/N2 mixture at 500 °C for 5 h. After preactivation, the activity of mesoporous 6 wt% Fe/HZSM-5 and 6 wt% Fe/HZSM-12 catalyst is comparable with that of traditional 3 wt% V2O5/TiO2 catalyst used as a reference at temperatures below 400 °C and even more active at higher temperatures.  相似文献   

17.
Well-defined ZSM-5 films were prepared on cordierite monoliths using the seed film method. The monoliths were seeded with silicalite-1 seeds and hydrothermally treated either at 75 or at 150 °C in a single or several steps. By adding sodium hydroxide to the solution, the aluminum concentration in the zeolite increased. Consequently, films with different Si/Al ratios were prepared. The film thickness could be controlled from 110 nm to 9 μm. Multi-step synthesis was used to prevent bulk crystallization and ultrasound treatment was found to be beneficial (in order) to remove sedimented crystals on the top of the coatings. The zeolite-coated monoliths were active for p-xylene isomerization, and the test results indicated that the films became less deactivated than the films prepared on alumina beads.  相似文献   

18.
The physicochemical, surface and catalytic properties of 10 and 20 wt% CuO, NiO or (CuO–NiO) supported on cordierite (commercial grade) calcined at 350–700 °C were investigated using XRD, EDX, nitrogen adsorption at −196 °C and CO oxidation by O2 at 220–280 °C. The results obtained revealed that the employed cordierite preheated at 350–700 °C was well-crystallized magnesium aluminum silicate (Mg2Al4Si5O18). Loading of 20 wt% CuO or NiO on the cordierite surface followed by calcination at 350 °C led to dissolution of a limited amount of both CuO and NiO in the cordierite lattice. The portions of CuO and NiO dissolved increased upon increasing the calcination temperature. Treating a cordierite sample with 20 wt% (CuO–NiO) followed by heating at 350 °C led to solid–solid interaction between some of the oxides present yielding nickel cuprate. The formation of NiCuO2 was stimulated by increasing the calcination temperature above 350 °C. However, raising the temperature up to ≥550 °C led to distortion of cuprate phase. The chemical affinity towards the formation of NiCuO2 acted as a driving force for migration of some of copper and nickel oxides from the bulk of the solid towards their surface by heating at 500–700 °C. The SBET of cordierite increased several times by treating with small amounts of NiO, CuO or their binary mixtures. The increase was, however, less pronounced upon treating the cordierite support with CuO–NiO. The catalytic activity of the cordierite increased progressively by increasing the amount of oxide(s) added. The mixed oxides system supported on cordierite and calcined at 450–700 °C exhibited the highest catalytic activity due to formation of the nickel cuprate phase. However, the catalytic activity of the mixed oxides system reached a maximum limit upon heating at 500 °C then decreased upon heating at temperature above this limit due to the deformation of the nickel cuprate phase.  相似文献   

19.
The single gas H2 and N2 permeability of a 4 μm thick dense fcc-Pd66Cu34 layer has been studied between room temperature and 510 °C and at pressure differences up to 400 kPa. Above 50 °C the H2 flux exhibits an Arrhenius-type temperature dependence with JH2=(5.2±0.3) mol m−2 s−1 exp[(−21.3 ± 0.2) kJ mol−1/(R·T)]. The hydrogen transport rate is controlled by the bulk diffusion although the pressure dependence of the H2 flux deviates slightly from Sieverts’ law. A sudden increase of the H2 flux below 50 °C is attributed to embrittlement.  相似文献   

20.
A critical replication and re-evaluation of Charnell’s procedure to the synthesis of zeolites A and X has been carried out, aiming at reliable protocols for preparation of large and uniform crystals of the respective zeolites in a scale of 50 g per batch. Triethanolamine, as an organic additive to the reacting sodium aluminosilicate hydrogel, increases the viscosity of the system, and reduces the reactivity of aluminium species towards nucleation and crystal growth through forming chelated complex compounds. The reactivity of silicate species has to be accordingly adjusted, by choosing proper source materials. Zeolite A crystals, which possess shapes of edge-truncated cubes, and sizes of 35–40 μm in edge-length, have been synthesized with a starting gel having the composition 1.7Na2O:Al2O3:0.7SiO2:165H2O:6.1TEA in 2-l batch-size, using dissolved metallic aluminium and colloidal silica. The crystallization has been accomplished at 85 °C within 21 days. When the gel has a starting composition 2.3Na2O:Al2O3:1.3SiO2:300H2O:10TEA (1-l batch), 70–80 μm large zeolite X crystals can be obtained at 85 °C in 35 days. Both starting gels are prepared at 0 °C, then quickly heated to the crystallization temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号