首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孔型对平板气膜冷却效率影响的数值模拟   总被引:1,自引:0,他引:1  
张玲  王冲 《热力发电》2015,(4):22-26
为了研究孔型对平板气膜冷却绝热效率(冷却效率)的影响,基于SSTk-ω紊流模型及Simple算法,采用有限体积法对控制方程进行离散。对不开槽姊妹孔(1个主孔和2个次孔)、开槽圆柱孔以及开槽姊妹孔3种不同孔型的平板气膜冷却效率进行数值模拟,得出吹风比分别为0.5,1.0,1.5,2.0时X/D=4截面的速度云图,以及不同孔型平板气膜的冷却效率。分析结果表明:随着吹风比的增大,3种孔型平板气膜的冷却效率降低;在低吹风比(M=0.5)时开槽姊妹孔平板气膜的平均冷却效率和覆盖区域最优;在高吹风比(M=2.0)时开槽圆柱孔平板气膜的平均冷却效率和覆盖区域最优。  相似文献   

2.
对不同吹风比条件下的典型单排孔冷却结构的平板气膜冷却特性进行了实验研究,对冷却孔下游的气膜冷却效率及换热系数分布规律进行了分析.实验在3个吹风比条件下进行,分别为0.5,1.0,1.5.实验中冷却孔直径的雷诺数ReD=13600.射流、主流的密度比通过温度控制保持在0.88.实验中采用热敏液晶技术用以获取冷却孔下游整个温度场分布信息,通过对实验数据进行分析,在吹风比0.5条件下冷却孔下游Y<10区域取得最优冷却效果;吹风比1.0条件下的冷却效果优于吹风比1.5条件下的冷却效果.气膜冷却条件下的换热系数分布和其对应的冷却效率分布基本相同.  相似文献   

3.
采用Realizable k-ε紊流模型,前缘滞止线两侧孔排采用负角度对吹式、其它孔排采用α=30°、β=45°复合角度射流孔,定义叶片表面为无滑移绝热壁面,主流温度Tm=473.15K,射流温度Tc=293.15K,对不同吹风比下叶片表面的气膜冷却效率及流线进行了分析。结果表明:随着吹风比的增加,叶片压力面侧的气膜冷却效率明显提高,叶片前缘处冷却效率略有提高,叶片吸力面侧可形成连续的气膜,气膜冷却效率较高;在滞止线两侧采用单一角度叉排对吹式孔排虽然可以提高该处气膜冷却效率,但此处射流对主流的扰动也比较强烈;复合角度射流的优势在局部主流速度较高的情况下能得到很好的体现。  相似文献   

4.
张玲  祝健  韩佳宁 《热力发电》2015,(3):58-62,68
采用CFD方法在叶栅端壁21%,51%,81%轴向弦长和前缘上游9%轴向弦长端壁处布置4排圆柱形气膜冷却孔,选用标准κ-ε模型模拟分析端壁单一角度与复合角度射流的冷却效果。结果表明:复合角度射流优势在入射角α=30°时最明显,此时复合角度射流平均冷却效率比单一角度射流平均冷却效率增加16.4%;随着吹风比增加,射流孔附近冷却效率下降速度变慢;复合角度射流的引入会导致反向涡不对称,加强了气膜的贴壁性,更有利于汽膜冷却。  相似文献   

5.
旋转叶片气膜冷却效果的数值研究   总被引:2,自引:1,他引:1  
采用数值模拟方法研究了静止和旋转涡轮叶片表面不同工况下的气膜冷却效果,计算给出了吹风比M=1.0、1.5等工况下静止和旋转叶片压力面、吸力面的气膜冷却效率,以及不同射流孔下游的气膜冷却效率,并分析了旋转和吹风比对气膜冷却效果的影响。结果表明:静止叶栅,M=1时叶片气膜冷却效果较好,旋转叶栅,M=1.5时叶片气膜冷却效果较好;叶栅在高速旋转时,冷却气流对射流孔附近区域影响不大,叶片尾缘附近气膜冷却效率呈现先增大后减小的趋势;叶片高速旋转时,产生的离心力使冷却气流流向叶顶区域,靠近叶顶区域的气膜冷却效率值较高。  相似文献   

6.
燃气轮机透平叶片气膜冷却数值模拟   总被引:1,自引:0,他引:1  
沈菁菁 《发电设备》2015,29(1):11-14,23
透平叶片的冷却技术是提高燃气轮机效率的关键,其中气膜冷却是非常重要的一种冷却方式。参考某型燃气轮机第一级动静叶片的几何尺寸进行建模,采用数值模拟的方法对气膜冷却进行了分析研究,主要研究了叶片前缘的气膜冷却。分析比较了多种参数对气膜冷却效果的影响,即不同吹风比、密度比、自由流湍流度和射流角度的影响。结果显示:吹风比过大或过小,冷却效果都不好;高密度的射流比低密度的射流更容易保持在表面处;低湍流度比高湍流度时气膜冷却有效度更佳;适当调整射流角度能改善冷却效果。  相似文献   

7.
上游斜坡对气膜孔换热特性影响的数值研究   总被引:1,自引:0,他引:1  
为了获得气膜孔上游放置斜坡对气膜孔换热特性的影响规律,采用数值模拟方法研究了斜坡的台阶高度分别为0.3D,0.5D和0.75D(D为气膜孔直径)时在不同吹风比下的流动过程和换热特性分布情况,并与常规气膜孔冷却结构形式进行了对比。研究表明:在气膜孔上游设置斜坡,延缓了主流通过反向涡对对冷却气流的掺混作用,反向涡对强度减弱,冷却气流出流后的贴壁效果更好,提高了气膜孔出口下游的冷却效率和换热系数,并且随着斜坡高度的增高,效果更为显著。吹风比M=1.0时,斜坡对气膜孔出口下游换热系数的改善作用更强。  相似文献   

8.
温比对双向扩张孔射流气膜冷却效率的影响   总被引:1,自引:0,他引:1  
为了探讨冷热流体真实温比与小温比的气膜冷却特性差别,采用湍流模型及Fluent软件,对吹风比Br分别为0.5和2.0,温比Tr分别为1.1和2.0的双向扩张孔射流气膜的流场、温度场和冷却效率分布进行研究。结果表明:Br=0.5时,2种温比下的冷气扩散基本一致,径向平均冷却效率差别不大;Br=2.0时,Tr=2.0的冷气径向扩散优于Tr=1.1的,径向平均冷却效率较Tr=1.1时增幅13.4%~55.5%。  相似文献   

9.
采用数值仿真软件,选用Realizable k-ε双方程湍流模型,对燃气轮机交叉孔叶片进行气膜冷却仿真研究;搭建实验平台,研究不同吹风比下的叶片冷却效率和对流换热系数;将仿真结果与实验数据进行对比,结果表明理论值与实验值具有一致性。最后得出结论:叶片前端气膜孔位置冷却效果最佳,沿着主气流方向,气膜冷却效果逐渐减弱;叶片吸力面的气膜冷却效果比压力面好;随着吹风比增大,气膜覆盖效果增强,冷却效率提高。  相似文献   

10.
为了研究透平静叶不同位置处猫耳气膜孔的冷却性能,对7种猫耳气膜孔结构在吹风比为0.5、1.0、1.5和2.0时的冷却效率曲线进行分析。结果表明:前向角大小是影响猫耳气膜孔冷却性能的关键参数;随着吹风比的增大,静叶压力面靠近前缘的气膜孔纵向平均冷却效率有降低趋势;提高前向角起始位置会使下游中心线附近冷却效率增大,但纵向平均气膜冷却效率较低。  相似文献   

11.
不同孔型平板气膜冷却的数值模拟   总被引:18,自引:4,他引:18  
为了研究不同射流孔形状对气膜冷却效率的影响,基于控制容积法,采用Realizablek-ε模型,对圆孔、簸箕孔和圆锥孔3种孔形的平壁气膜冷却进行了数值模拟。讨论了反向涡旋对和射流附壁性对冷却效率的影响,总结了3种形状射流孔的冷却效率随射流速度比的变化趋势。结果表明,在相同射流速度比时,簸箕孔的冷却效率和横向覆盖宽度都大于圆孔和圆锥孔,且簸箕孔的射流速度比在所计算的射流速度比范围内存在一个最佳值;簸箕孔和圆锥孔不同程度地抑制了反向涡旋对的产生,提高了射流的附壁性,从而降低了涡旋强度,增强了壁面的冷却效果。  相似文献   

12.
宽口扇形孔射流气膜冷却效率研究   总被引:1,自引:0,他引:1  
为了揭示宽口扇形孔射流提高冷却效率的机理,采用商业软件及k-ε模型对吹风比为0.5,1.0,1.5和2.0的宽口扇形孔射流气膜冷却效率进行了数值模拟及分析。结果表明:宽口扇形孔射流有效地增加了冷气径向覆盖范围,冷气和燃气掺混后的流场相比于圆柱孔射流流场更有利冷气贴附于壁面,其冷却效率明显高于圆柱孔射流冷却效率;宽口扇形孔射流在吹风比为1.0,1.5和2.0时的冷却效率差别较小,且均明显大于吹风比为0.5时的冷却效率。  相似文献   

13.
李录平  唐学智  张浩  黄章俊 《中国电力》2018,51(12):7-13,35
采用数值模拟的方法研究了旋转对叶片气膜冷却效果的影响,详细对比了不同吹风比下叶片在旋转和静止状态下的气膜冷却特性,并用平均气膜冷却效率和不均匀系数评估了气膜冷却效果。结果表明:在叶片压力面,叶片的旋转使得射流气体从气膜孔流出后法向动量增大,与主流掺混作用加强,从而使得叶片压力面气膜冷却效率值低于静止状态;在叶片吸力面,叶片旋转使得冷却气体流出后法向动量减小,能够更好地贴附在叶片表面向下游流动,使得旋转时叶片吸力面气膜冷却效率要优于静止状态,并且叶片后沿的平均气膜冷却效率较静止状态有显著提高;旋转状态下叶片表面的不均匀度系数要略大于静止时叶片表面不均匀度系数。  相似文献   

14.
为了提高凹槽叶顶的气膜冷却效率,提出了一种凹槽带肋叶顶结构。通过数值模拟方法,研究了叶顶结构在不同吹风比、滑移壁面条件下冷却气体在凹槽腔内的流动状态和气膜冷却效率分布,揭示了凹槽带肋叶顶改善叶顶气膜冷却效率机理。结果表明:吹风比为0.5时,气膜孔附近冷却效率最高;吹风比为1.5时,凹槽内吸力面附近冷却效率最高;肋片导流作用使冷气更大范围地覆盖在凹槽内,提高了平均冷却效率,这种效应在吹风比为0.5时更明显。  相似文献   

15.
为了探索涡轮叶片尾缘劈缝冷却特性,针对后台阶三维劈缝冷却模型,采用数值模拟方法研究了吹风比Br=0.5、0.8、1.0、1.5时的气膜冷却效率。结果表明:后台阶区域劈缝下游气膜冷却效率比肋下游气膜冷却效率在小吹风比(Br=0.5)时高10.9%~39.1%,在大吹风比(Br=1.5)时高53.5%~56.0%;Br越大,后台阶气膜冷却效率沿流向降低速度越快,后台阶尾部气膜冷却效率沿半圆柱周长方向降低速度越慢;肋下游后台阶尾部,Br为0.8和1.0时气膜冷却效率比Br为0.5和1.5时高7.0%左右;后台阶尾部是气膜冷却的薄弱部位,其面积加权平均气膜冷却效率比后台阶低37.0%~39.0%;Br为0.8、1.0时,后台阶及其尾部的面积加权平均气膜冷却效率最高,较Br=0.5时高9.0%~11.0%,较Br=1.5时高3.0%~6.0%。  相似文献   

16.
为了研究气膜冷却不同孔型对燃气轮机叶片冷却效率的影响,采用Fluent数值仿真软件,选用Realizable k-ε双方程湍流模型,对圆孔、交叉孔气膜冷却进行数值模拟。同时研究不同马赫数吹风比下圆孔、交叉孔冷却系数,换热系数,温度和冷却效率云图等。计算结果表明,同一孔型下叶片前缘冷却效率和换热系数较高,叶片中缘、尾缘相对较小。在同一吹风比下,不同孔型在叶片上冷却效率、换热系数的变化趋势一致,但是交叉孔的冷却效率和对流换热系数比圆孔高。  相似文献   

17.
为了探讨薄壁尺寸对气膜冷却效率影响,对壁厚为1倍、2倍和3倍孔径结构下游流场、温度场及气膜冷却效率进行了数值模拟研究。结果表明:壁厚为1倍孔径时气膜孔出口截面处出现高速区,使气膜孔出口垂直主流方向射流动量大,促进冷气被抬离壁面,气膜孔出口展向速度指向孔中心线,减弱气膜展向扩散性;在吹风比为1.0、1.5和2.0时,壁厚为1倍孔径结构的展向平均气膜冷却效率比壁厚为3倍孔径结构分别低9%~45%、21%~43%和9%~62%;壁厚为2倍和3倍孔径结构的展向平均气膜冷却效率相差较小。  相似文献   

18.
本文对叶片高速扫掠作用下高压涡轮外环的非定常气膜冷却过程进行了数值模拟,应用滑移网格实现涡轮叶片与外环壁面之间的相对运动,分析了叶片的旋转效应、吹风比、转速、气膜孔逆顺流布置等因素对高压涡轮外环气膜冷却特性的影响规律。结果表明:叶片与涡轮外环之间的相对运动使得气膜分布更加均匀,同时导致了吸力面附近气膜的葫芦状分布,有利于对外环壁面的冷却;逆向分布气膜孔在大吹风比与高转速下有更好的气膜冷却效果;吹风比的增加加强了叶顶泄露涡作用下的葫芦状气膜分布,而转速的增加减弱了叶顶泄露涡对冷气的压迫作用。  相似文献   

19.
采用Fluent软件和k-ε湍流模型,在主流雷诺数为9 600,吹风比分别为0.5,1.0,1.5和2.0,横流速度比分别为0.3,0.5和0.7条件下,对横流冷气气膜的冷却效率、流场和温度场进行三维数值模拟。结果表明:吹风比为1.0时,横流速度比对2个出口流量分配影响最明显;低吹风比(0.5)时,横流速度比对径向平均冷却效率和面平均冷却效率影响均非常小;中等吹风比(1.0)时,横流速度比增加使冷却效率减小;高吹风比(2.0)时,横流速度比对径向平均冷却效率分布影响比较复杂,对面平均冷却效率影响较小。  相似文献   

20.
为了增强燃气轮机动叶的气膜冷却效果,提出一种缩放型气膜孔结构,采用数值模拟的研究方法,模拟了吹风比M?1.0、主流湍流度Tu?5%时,分别带有扩张角度??0?、??5?、??10?和??15?的4种缩放型冷却孔叶片的气膜冷却效果,并用平均气膜冷却效率和不均匀系数两个新型评价指标辅以评价叶片冷却效果。研究结果表明:缩放孔型的扩张角度由??0?增加至??10?的过程中,无论是在叶片压力面还是吸力面上,气膜冷却效率整体呈递增趋势,其纵向平均气膜冷却效率和横向平均气膜冷却效率逐渐增大,不均匀系数降低,冷却效果增强。当扩张角度增大至??15?时,相对于带有??10?孔型的叶片,其压力面和吸力面上的气膜冷却效率出现下降,纵向平均气膜冷却效率和横向平均气膜冷却效率减小,不均匀系数增大,冷却效果变差;在带有不同孔型的叶片的中后缘位置都出现了明显的高冷却区域,带有扩张角度??10?孔型的叶片在该区域的冷却优势更明显;4种孔型在叶片吸力面上气膜覆盖的整体均匀度都要比压力面高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号