首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A desirable operating temperature range and small temperature gradient is beneficial to the safety and longevity of lithium-ion (Li-ion) batteries, and battery thermal management systems (BTMSs) play a critical role in achieving the temperature control. Having the advantages of direct access and low viscosity, air is widely used as a cooling medium in BTMSs. In this paper, an air-based BTMS is modified by integrating a direct evaporative cooling (DEC) system, which helps reduce the inlet air temperature for enhanced heat dissipation. Experiments are carried out on 18650-type batteries and a 9-cell battery pack to study how relative humidity and air flow rate affect the DEC system. The maximum temperatures, temperature differences, and capacity fading of batteries are compared between three cooling conditions, which include the proposed DEC, air cooling, and natural convection cooling. In addition, a DEC tunnel that can produce reciprocating air flow is assembled to further reduce the maximum temperature and temperature difference inside the battery pack. It is demonstrated that the proposed DEC system can expand the usage of Li-ion batteries in more adverse and intensive operating conditions.  相似文献   

2.
In the recent years, significant developments in the electric batteries have made them one of the most promising storage technologies for electrical energy. Among the various rechargeable batteries that are developed, lithium ion batteries stand out due to their capability of storing more energy per unit mass, low discharge rate, low weight, and lack of a memory effect. The advantages that batteries offer have promoted the development of the electric and hybrid electric vehicles. However, during charging and discharging processes, batteries generate heat. If this heat is not removed quickly, the battery temperature will rise, resulting in safety concerns and performance degradation. Thermal management systems are developed to maintain the temperature of the battery within the optimum operation range. This review paper focuses on novel battery thermal management systems (BTMSs). Air, liquid, phase change material, and pool‐based BTMSs are considered. Air‐based thermal management systems are discussed first. Liquid cooling systems and phase change‐based systems are discussed subsequently, and then the recently proposed evaporating pool‐based thermal management system is considered.  相似文献   

3.
Electric vehicles equipped with lithium-ion batteries face a huge challenge, and the fact that battery life is very much affected by the temperature conditions of their operating environment, the heat reduces battery life cycle and time and increases the likelihood of thermal degradation and explosion. This problem has forced engineers to cool the battery. The methods used to cool the battery includes a cool water method (passing water or a dielectric fluid from the battery pack), cooling air (blowing air into the battery compartment by the fan), using a refrigeration system (such as cooling screens), and the use of phase-change material (PCM). In this research after reviewing and referring to valid authorities, it was found that PCMs are superior to all three other cooling systems because the air-conditioning system is not very desirable due to the high-temperature gradient between the battery cells. Also, cooling and refrigeration systems with refrigerant gases will also cost a very high cost on the electric car. The results of the studies showed that the cooling the battery using the PCM creates a similar temperature profile between the batteries in the battery pack, the temperature gradient is much smaller than the air cooler and cool water, and the final cost will be much lower. Also, it performs more efficiently in high-speed road dynamics and increases the battery life of an electric car or electric hybrid.  相似文献   

4.
电动汽车在应对气候变化和减少碳排放方面显示出了巨大潜力,电池作为电动汽车的动力来源,在性能和安全方面受温度影响很大。一套有效的热管理控制系统能使电池组温度保持在最佳工作范围内,提高整车的续驶里程。主要总结了目前对电池进行散热和保温的主流电池热管理技术——风冷、液冷、相变冷却、热管冷却以及电池加热技术。提出电池热管理技术应往智能化、集成化、与机器学习相结合、能够自适应调节电池生态温度的方向发展,将会有很大的研究空间。  相似文献   

5.
保持合适的运行温度是锂离子电池高效、安全、长寿命的保证,因而对其进行有效的热管理是非常有必要的。本文针对圆柱形锂离子电池,设计了嵌套电池表面的方形金属外壳,以强化电池散热和单体电池间传热。对比自然对流条件下电池单体加壳和无壳时不同放电倍率的温升情况、多个电池并联的温升情况,以及不同通风功率下多个电池并联时嵌套不同外壳的温升情况,发现加壳可以有效促进电池(组)散热。另外,设计了电池组内不同单体电池出现放电不均衡情况,以检验嵌套外壳对减小电池组内单体电池间温差的效果,结果表明,自然对流条件下,加壳后单体电池间最大温差可以降低10℃以上。  相似文献   

6.
采用实验测试与数值仿真的方法对NCR18650A三元锂电池组在1 ~ 3 C放电和1.6 C充电过程的温升特性进行测试,同时验证所建立电池产热模型的准确性。结果显示,实验测试结果与电池产热模型仿真结果之间的相对误差在合理范围内,满足工程应用需求。电池组在自然冷却的情况下,仅在1 C放电状态下符合其最佳工作区间42.5 ~ 45.0℃的要求,3 C放电倍率下最高温度为89.4℃。提出并建立基于热电致冷主动热管理模型,将热电致冷组件设置在电池组上方,致冷功率为50 W时可有效控制电池组3 C放电过程的温度,在最佳工作区间实现电池单体温差小于5℃,抑制电池组的热失效并实现良好的均温性。  相似文献   

7.
Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources.In order to ensure the safety and improve the performance,the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range.The effect of temperature on the capacity fade and aging are simply investigated.The electrode structure,including electrode thickness,particle size and porosity,are analyzed.It is found that all of them have significant influences on the heat generation of battery.Details of various thermal management technologies,namely air based,phase change material based,heat pipe based and liquid based,are discussed and compared from the perspective of improving the external heat dissipation.The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications,and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment.The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.  相似文献   

8.
Thermal management of large-scale Li-ion battery packs is of great significance to their safety and life cycle, which would impact their applicability in electric vehicles. Of the many strategies developed for this purpose, indirect liquid cooling has already demonstrated quite high potentials in thermal regulation of such battery systems. In this study, a compact lightweight serpentine wavy channel configuration was chosen to construct an indirect liquid cooling system for a battery module of cylindrical Li-ion cells. The serpentine channel has a number of six internal minichannels. Experimental test data were used to conduct a comprehensive thermal analysis to examine the highest temperature, the maximum temperature difference, and the heat accumulation percentages, and so forth within the battery pack. Results have revealed the ability of the cooling system to maintain the module temperature within appropriate working conditions for electric vehicle applications for most cycling tests including two driving cycles. Furthermore, the analysis insights raised by this study could be useful in understanding the cooling performance of the liquid-based thermal management systems for electric vehicles.  相似文献   

9.
为研究动力电池组的温度特性以及维持其工作在最佳的温度范围内,以锂离子电池为研究对象,设计了一种新型混合动力汽车的电池热管理系统,利用空调系统和发动机排气系统来调控电池组的温度。建立了锂电池组的三维瞬态产热数值模型,以电池组的三维尺寸和进风口流速为输入参数,以降低电池组的最大温升和提高电池组的温度均匀性为输出参数,利用FLUENT仿真软件和DesignXplorer模块进行联合优化设计了电池组的结构。优化后的电池组的温升比优化前降低了5.39 K,电池组温差降低了6.41 K。分析了恒倍率放电以及对流换热系数对单体电池温升的影响,研究表明:放电倍率越大电池温升越快,放电结束后电池的温度越高,在对流换热系数小于30 W/(m2·K)时,散热效果明显。对电池组在不同条件下加热或者冷却进行了仿真分析,验证了该电池热管理系统的可行性。  相似文献   

10.
Thermal issues associated with electric vehicle battery packs can significantly affect performance and life cycle. Fundamental heat transfer principles and performance characteristics of commercial lithium‐ion battery are used to predict the temperature distributions in a typical battery pack under a range of discharge conditions. Various cooling strategies are implemented to examine the relationship between battery thermal behavior and design parameters. By studying the effect of cooling conditions and pack configuration on battery temperature, information is obtained as to how to maintain operating temperature by designing proper battery configuration and choosing proper cooling systems. It was found that a cooling strategy based on distributed forced convection is an efficient, cost‐effective method which can provide uniform temperature and voltage distributions within the battery pack at various discharge rates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The battery thermal management system based on phase change materials (PCMs) has proven to be a safe, inexpensive, and high-performance technology, which is currently gaining popularity over the other battery thermal management systems. PCMs are able to absorb heat generated by batteries, prolong battery life, and improve their performance. Organic compounds, such as paraffin, are widely used as phase change materials for the battery thermal management systems; however, there are no published data on the application of inorganic PCMs. Therefore, the main objective of this work is developing of two composite inorganic PCMs based on magnesium chloride hexahydrate and characterizing their properties for passive thermal control of lithium-ion battery packs. Moreover, to have a valid baseline and compare the behavior of two inorganic PCMs with currently commercialized and well investigated organic PCM, paraffin wax was used as reference material for both mixtures. All three PCMs were impregnated into the expanded graphite matrix to enhance their thermal conductivity. The material characterization studies, including thermal properties investigation, density and viscosity measurements, soaking and compression testing, evaluation of thermal expansion, thermal conductivity, and micro X-ray fluorescence analysis, were conducted for all PCMs. The results indicate that both inorganic mixtures are appropriate for thermal management of Li-ion battery packs. Future work with the developed and characterized composite inorganic PCMs will include electrical cycling studies and nail penetration tests to reveal their effectiveness for passive thermal management of Li-ion battery packs.  相似文献   

12.
The rated temperature and its uniformity of lithium-ion (Li-ion) battery (LIB) pack are the main demands for safe and efficient operation. This paper investigates an air cooling system of a pack of five prismatic LIB's generating considerable heat through discharging energy. The cooling system is a three-dimensional channel with flexible baffles of different arrangements installed on the walls of the channel to lower and regulate the temperature of the batteries. Three arrangements of these baffles are studied, transverse; L-shaped and staggered. The study is formulated as turbulent fluid–structure interaction and solved numerically using the finite elements method. The study was conducted for five spaces between batteries, S = 0, 1, 2, 3 and 4 mm and three different inlet air velocities, Uin = 0.5, 1 and 2 m/s. It was found that the flexible baffles guide the coolant towards the batteries smoothly with less pressure drop and this significantly improves the performance of the battery thermal management system due to the reduction of the maximum temperature and temperature variation as well. The staggered arrangement of the baffles shows the most effective configuration, where the maximum temperature difference between batteries is only 1.85°C for S = 1 mm and Uin = 2 m/s.  相似文献   

13.
With the depletion of fossil fuels and the aggravation of environmental pollution, the research and development speed of electric vehicles has been accelerating, and the thermal management of battery pack has become increasingly important. This paper selects the electric vehicle battery pack with natural air cooling as the study subject, conducts simulation analysis of the heat dissipation performance of battery packs with and without vents. Then this paper researches on the influence of internal flow field and external flow field. Field synergy principle is used to analyze the effect of velocity field and temperature field amplitude. The results show the following: it is found that the maximum temperature rise and the internal maximum temperature difference of the battery pack with vents are reduced by about 23.1% and 19.9%, raising speed value can improve the heat dissipation performance, and raising temperature value can decrease the heat dissipation performance. Reasonable design of the vents can make the inner and outer flow field work synergistically to achieve the best cooling effect. Then the reference basis for the air cooling heat dissipation performance analysis of electric vehicle, battery pack structure arrangement, and air‐inlet and air‐outlet pattern choosing are offered.  相似文献   

14.
A battery pack is the main energy storage element, and directly affects the performance of an electric vehicle. Battery thermal management system research and its development for a modern electric vehicle is required. This paper selects the forced air cooling of battery pack as the research object, and uses simulation methods to research the heat dissipation performance with different structures of battery packs. The results indicate that according to the four types of transient state conditions, the rising temperature of both battery packs are significantly higher than the temperature difference, the maximum temperature rise and temperature difference of a horizontal battery pack are lower than a longitudinal battery pack. When an electric vehicle begins to decrease speed, the curves of temperature rising and temperature difference increase. This shows the internal heat is continuously rising, so even in a electric vehicle beginning to decrease speed, the fan must work. The reference basis for choosing battery pack type and an analysis of heat flow field characteristics, including fan run‐time control, are offered.  相似文献   

15.
为了研究动力汽车用锂电池温度场分布,建立了单体电池及电池组仿真模型,通过实验与FLUENT软件模拟验证的方式分析单体电池温度场。通过仿真分析讨论电池组温度场,采用三种不同的进出风方式进行空气强制冷却电池组,分析了进出风口有倾角与无倾角的不同温度控制效果,结果表明带有倾角的进出风方式有利于降低电池组最高温度。采用电池组壳体侧面开孔方式进行电池组热管理,可有效改善电池组放电过程的温度分布均匀性。  相似文献   

16.
It is a promising cooling strategy to use the heat pipe for the Li-ion battery module, which can maintain the temperature of the battery module properly and prevent high temperature, triggering the thermal runaway among adjacent batteries. In this study, the thermal runaway model is simulated through the internal short circuit, which couples with Volume of Fluid (VOF) model of the heat pipe cooling and solves in ANSYS FLUENT to realize the heat and mass transfer between batteries and heat pipes. A user-defined function (UDF) code including mass source and energy source is used to calculate the heat and mass transfer in VOF model during the thermal runaway process. Numerical simulations are adopted to probe thermal runaway processes of a single battery under different operation conditions and the thermal runaway propagation from a battery to adjacent batteries. It is concluded that the heat pipe cooling system cannot prevent the thermal runaway of a single battery, but it can prevent the thermal runaway propagation from a battery to adjacent batteries.  相似文献   

17.
Battery thermal management (BTM) system is an indispensable component for large‐sized lithium‐ion battery packs used in aerospace and automotive applications. Besides providing a proper temperature range for batteries to operate, thus improving their efficiency, lifespan, and safety, the BTM system also needs to be well designed with considering the cost, weight, and practicability. In this paper, an internal passive BTM system is proposed for the cylindrical Li‐ion batteries. The design embeds a phase change material (PCM) filled mandrel inside the battery to achieve the cooling effect. A thermal test cell is first fabricated and tested in a wind tunnel under different cooling scenarios, and it is also used to verify a numerical thermal model. The proposed BTM system is further examined through the model and found to be able to create a preferable environment for batteries to operate. Specifically, the core BTM system consumes less PCM and achieves lower temperature rises and more uniform temperature distributions than an external BTM system. The proposed design can also exert its full latent heat to manage the heat generated from the battery without having a thermally conductive matrix, which is usually composite with PCM in external BTM systems. In addition, experiments show that the battery equipped with the proposed BTM system is ready for intensive cycling tests.  相似文献   

18.
Investigation on the thermal behavior of the lithium-ion battery which includes the temperature response, heat contribution and generation, is of vital importance for their performance and safety. In this study, an electrochemical-thermal cycling model is presented for a 4 Ah 21700 type cylindrical single cell and 3× 3 battery pack and the model is validated by experiment on a single cell. Thermal behavior on a single cell is first analyzed, the results show that the heat generated in the charge is smaller than the discharge, and the polarization heat contributes the most to total heat, especially under higher rate. It can also be concluded from the battery pack that the temperature of the cell inside the battery pack is significantly greater than the external battery, while the temperature difference exists the opposite regular due to the worst heat dissipation of the central cell. Finally, after taking the enhanced liquid cooling strategy, the maximum temperature is 320.6 K that is reduced by 9.38%, and the maximum temperature difference is 4.9 K which is reduced by 69.6% at 2C, meeting the requirements of battery thermal management system.  相似文献   

19.
The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. PCMs have been widely used in latent heat thermal-storage systems for heat pumps, solar engineering, and spacecraft thermal control applications. The uses of PCMs for heating and cooling applications for buildings have been investigated within the past decade. There are large numbers of PCMs that melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also summarizes the investigation and analysis of the available thermal energy storage systems incorporating PCMs for use in different applications.  相似文献   

20.
The performance of power battery is a significant factor affecting the overall quality of electric vehicles. To optimize the thermal management effect of battery pack, cold plate with wedge‐shaped microchannels was proposed in this paper. On the basis of the models of the independent cold plate and the battery‐cooling module, the effects of outlet aspect ratio, flow rate, and branching structure on the heat dissipation performance of the cold plate were studied at first. Afterwards, the effects of cooling surface, flow rate, and branching structure on the temperature distribution of the battery module were simulated. The results showed that the wedge‐shaped channels provided a good cooling efficiency and surface temperature uniformity. When the wedge‐shaped channel was used in thermal management of the battery module, the side‐cooling method reduced the temperature difference of batteries by more than 35.71% compared with front cooling under the mass flow rate of 2 × 10?5 kg/s. At a discharge rate of 3.5 C, the flow rate of 1 × 10?4 kg/s controlled the battery temperature to within 45°C, and the branching structure designed for the module successfully decreased the maximum temperature difference from 7.27°C to 4.67°C, which has been reduced by approximately 35.78%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号