首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Influence of prior acid treatment on acetylation of starch isolated from an Indian sorghum cultivar was investigated. The starch was acid thinned (AT) using 0.1, 0.5, and 1 M HCl for 1.5 h and then acetylated (Ac) with acetic anhydride (8% w/w). The acid thinning and subsequent acetylation appeared to reduce the percentage acetylation as indicated by degree of substitution. Ac‐AT starches exhibited significantly different physicochemical, thermal, pasting, and gel textural properties from those of AT and Ac starches. Starches after dual modification showed higher solubility, lower AM content, gelatinization temperatures, retrogradation, peak viscosity, and gel hardness than native starch. Enthalpy and range of gelatinization were observed to be higher in dual modified starches than native starch. However, no significant changes in granule morphology or crystalline pattern of Ac‐AT starches were observed compared with native starch.  相似文献   

2.
Large and small wheat starch granules were used for cross‐linking and acetylation to determine effects of granule sizes on physicochemical properties of the modified starches. The native and cross‐linked starches from the small granules showed higher phosphorus contents than did those from the large granules. However, the level of phosphate substituents in the modified starches was not significantly different between the large and small granules under the same conditions. In contrast, the large granules had a higher reactivity with acetic anhydride than did the small granules. The phosphate group cross‐linked starch (CS), acetylated starch (AS) and acetylated cross‐linked starch (ACS) from the large granules had lower gelatinization temperatures and higher enthalpies than those from the small granules. The paste viscosities of the CSs from the large granules decreased rapidly, whereas those of the AS or ACS increased significantly as compared with those from the small granules. The pastes of cross‐linked starches from the small granules were more stable than those from the large granules, whereas the pastes of AS and ACS from the large and small granules had similar resistance to freeze‐thaw treatment. Scanning electron microscopy (SEM) also showed that the small granules were less damaged after modification than the large ones. Thus, the different granule sizes resulted in different physicochemical properties of starch after modification.  相似文献   

3.
Black gram (Phaseolus mungo L.) starch was modified by heat and moisture treatments, acetylation, oxidation, cross-linking, and adding free fatty acids (palmitic, stearic, and linoleic). Heat and low moisture treatment, acetylation, oxidation, and cross-linking lowered the starch gelatinization temperature by 1–6°C, while adding fatty acids and the high moisture-heat treatment raised it by 1–4°C. All modifications caused an increase in least gelation concentration of starch. High moisture-heat treatment increased both water and oil absorption of starch. At 95°C, heat-moisture treated, acetylated, and oxidized starches were more soluble, while fatty acid treated and cross-linked starches were less soluble compared to raw starch. The modified starches had greater swelling capacity and solubility at pH 2.0 and 10.0. Heat-moisture treated and chemically modified starches had lower swelling capacity (at 95°C) than that of isolated starch, whereas addition of fatty acids increased it.  相似文献   

4.
The effect of hydroxpropyl β-cyclodextrin (HPβ-CD) on physical properties and digestibility of wheat, potato, waxy maize and high-amylose maize starches before and after acetylation was studied. Effect of HPβ-CD on amylose–lipid complexes in native and acetylated potato starches synthesized using α-lysophosphatidylcholine was also studied. Acetylation increased swelling factor, amylose leaching, peak viscosity and susceptibility to α-amylase hydrolysis, but decreased gelatinization temperature and enthalpy and gel hardness in all starches. HPβ-CD markedly increased swelling factor and amylose leaching in native and acetylated wheat starches but had little or no impact on other starches. Wheat starch gelatinization enthalpy decreased in the presence of HPβ-CD but gelatinization temperature of all the starches was slightly increased. HPβ-CD had no influence on enzymatic hydrolysis. Melting enthalpy of amylose–lipid complex in both native and acetylated wheat starches was decreased by HPβ-CD. Acetylation also decreased the melting enthalpy of amylose–lipid complex in wheat starch. Similar trend of thermal transitions was observed in the presence of HPβ-CD for the amylose–lipid complexes synthesized in potato starch. Acetylation reduces the complex formation ability of the amylose polymer. Similar to gelatinization, acetylation widened the melting temperature range of amylose–lipid complexes while shifting it to a lower temperature. Higher swelling and amylose leaching, and decreased gelatinization temperature and enthalpy resulting from acetylation of wheat starch is consistent with its influence on starch hydration. Similar effects resulting from the inclusion of HPβ-CD were consistent with the disruption of amylose–lipid complex by HPβ-CD which promotes granular hydration.  相似文献   

5.
Cassava starch was cross‐linked with epichlorohydrin (EPI) at 45°C for 2 h in three different media which include water, water in the presence of a phase transfer catalyst (PTC) and N,N‐dimethylformamide (DMF). The products were characterized by determining their physicochemical, thermal and retrogradation properties. In aqueous medium, the use of a PTC, tetrabutylammonium bromide (TBAB) produced derivatives with higher degree of cross‐linking than those prepared without the use of the catalyst. The degree of cross‐linking was found to be higher using the same concentration of EPI when the reaction was carried out in DMF. At low levels of cross‐linking, the peak viscosity of the cross‐linked starches increased in comparison to that of the native starch. With increasing degree of cross‐linking, the peak viscosity showed a significant reduction. The swelling volume, solubility and light transmittance of the starch pastes were lower for the modified starches. The cross‐linked starches showed slightly reduced values for the gelatinization temperatures, Tonset, Tpeak and Tend. The enthalpy of gelatinization of the modified starches increased with increase in the degree of cross‐linking. The modified starches exhibited higher water‐binding capacities (WBC) than the native starch; but with increase in the degree of cross‐linking, there was a gradual decrease in WBC. The in vitro alpha amylase digestibility of the modified starches decreased gradually with increase in the level of cross‐linking.  相似文献   

6.
Corn starch (20%, w/w) was non‐thermally and conventionally cross‐linked with phosphorus oxychloride (POCl3; 0.01, 0.05, or 0.1%, based on dry weight of starch) at 400 MPa for 5, 15 and 30 min and at 45°C for 2 h, respectively. Swelling power and solubility of both non‐thermally and conventionally cross‐linked corn starches were relatively lower than those of native corn starch. The pressure holding time did not affect the solubility and swelling power of non‐thermally cross‐linked corn starches. X‐ray diffraction patterns and relative crystallinity were not significantly altered by both conventional and non‐thermal cross‐linking. DSC thermal characteristics of both non‐thermally and conventionally cross‐linked corn starches were not significantly changed indicating that the double helical structure of amylopectin was not influenced by both conventional and non‐thermal cross‐linking reactions. Both non‐thermal and conventional cross‐linking greatly affected the Rapid Visco Analyser (RVA) pasting properties, such as increase in pasting temperature and decrease in peak viscosity compared to native starch. This result suggests that in case of cross‐linking using POCl3, both non‐thermal and conventional methods result in similar physicochemical properties and non‐thermal cross‐linking with POCl3 can reduce the reaction time from 2 h to 15 min. This work shows the potential and possibility of non‐thermal starch modification and provides the basic and scientific information on the physicochemical properties of non‐thermally cross‐linked corn starches with phosphorus oxychloride using UHP.  相似文献   

7.
An integral approach of chemical modification effects on physicochemical and functional properties of corn starch was performed using different and complementary techniques. Acetylated, acetylated crosslinked, hydroxypropylated crosslinked, and acid modified corn starches were analyzed. Substitution and dual modification reduced significantly amylose concentration. Chemical modification decreased granules crystallinity degree. A significant increase in swelling power was observed in substituted and dual modified starches at 90 °C, besides these treatments decreased gelatinization temperature and enthalpy. Acid modified starch pastes showed a Newtonian behavior while substituted and dual modified ones exhibited a viscoelastic response. Dynamic rheological properties of modified starch pastes were not affected by post gelatinization time while native starch pastes developed a more rigid structure during storage. Retrogradation of substituted starch pastes after 12 days at 4 °C was reduced, since syneresis degree and hardness increase were significantly lower than those of native pastes. It was demonstrated that only substituted and native starches exhibited film forming capacity.  相似文献   

8.
RHEOLOGICAL PROPERTIES OF CHEMICALLY MODIFIED RICE STARCH MODEL SOLUTIONS   总被引:1,自引:0,他引:1  
Native rice starches have poor resistance to shear, and fair stability to retrogradation with soft texture, which can be altered through chemical modifications. Starch from broken pieces of rice of three rice cultivars (PUSA‐44, PR‐106 and PR‐114) was chemically modified by etherification and esterification reactions by different combinations of modification reagents to investigate the effect of modification on the rheological properties of rice starches. The modification resulted in shear stable gel with apparent pseudoplastic characteristics. The viscosity of starches increased upon acetylation and dual modification as a result of increase in solubility. However, cross‐linking had shown the reverse effect. The flow behavior index (n) and consistency coefficient (k) were significantly (P ≤ 0.05) improved upon modification in acetylated and dual‐modified starches. The effect of modification on the rheological properties was observed in similar pattern in all the three rice cultivars but varied significantly in variety PUSA‐44 may be because of its relatively higher amylose content.  相似文献   

9.
Banana starch was double modified by cross‐linking and substitution, using two different cross‐linking agents, i.e. phosphorus oxychloride (POCl3) and a mixture of sodium trimetaphosphate/sodium tripolyphosphate. The morphological and physicochemical properties and the absorption capacity for heavy metals of the modified starches were assessed. Double modified starch granules (cross‐linked carboxymethyl starches CCSA and CCSB) presented changes in the surfaces. These starches had a bigger average particle size than unmodified starch due to the swelling of the granules during the chemical modification, also aggregates were formed. The double modified banana starches presented an A‐type X‐ray diffraction pattern with slightly decreased crystallinity compared with the unmodified counterparts. The double modification of banana starch decreases the temperature and enthalpy of gelatinization and the decomposition temperature. These results are related to partial disorganization during the chemical treatment. The double modified banana starch possess sorption capacity for heavy metal ions in the order Cd2+ >Pb2+>Cu2+>Hg2+. Due to their physicochemical characteristics and absorption capacity, the double modified banana starches can be used in diverse applications.  相似文献   

10.
The objective of this work was to study the effect of reagent type on properties of acetylated barley starch (BS) and maize starch (MS) after modification with acetic anhydride (AA) and vinyl acetate (VA) at similar molar concentration for mole of glucose of both reagents. Degree of substitution (DS), morphological characteristics and granule size distribution, gelatinization and retrogradation, pasting properties, and X‐ray diffraction pattern were evaluated. Acetylation disturbs the short and long range order, and the effect was higher with AA than VA, and for BS than MS. This is due to the higher DS determined in AA–BS. In the pasting profile, acetylated starch showed the maximum peak viscosity at lower temperature, this effect was strongest for BS and anhydride acetic‐acetylation. Differential scanning calorimetry showed decrease in gelatinization parameters in acetylated starches (temperatures and enthalpy), and retrogradation was suppressed by acetylation. This effect was stronger in starches acetylated with AA despite their higher DS. This pattern can be explained from the occurrence of surface effects in acetylation with AA.  相似文献   

11.
Banana starch was cross‐linked using different cross‐linking reagents, phosphoryl chloride (POCl3), sodium trimetaphosphate (STMP), and epichlorohydrin (ECH), under alkaline conditions. The reaction conditions were selected to produce similar pasting profiles. The effects of the different cross‐linking reagents on the physicochemical and structural characteristics of cross‐linked starches were evaluated. The microscopy study did not show difference on the surface of the granules. Slight decrease in the peak temperature and enthalpy were found in the cross‐linked banana starch. The chemical groups introduced in the starch molecules by the diverse reagents promoted the re‐association of starch chains during storage. The rheological analysis of all starch dispersion at 10% (flow curves) showed a non‐Newtonian shear‐thinning; pastes obtained were time‐independent, suggesting an important contribution of the continuous phase. Structural study showed that the cross‐linked STMP‐starch had the lowest level of amylose and the ratio short/long amylopectin chains. The three reagents used for cross‐linking presented different action mode on starch granule and its components.  相似文献   

12.
以木薯淀粉为原料,对酸解淀粉、乙酰化淀粉及酸解乙酰化淀粉的糊性质进行了研究,并用扫描电子显微镜、X射线衍射仪和傅里叶变换红外光谱仪对改性淀粉的形貌和结构进行了分析。结果表明:木薯淀粉经酸解改性改善了糊的透明度,膨胀度有所降低,糊化温度升高,峰值黏度显著降低,凝沉性有所改善;乙酰化改性增加了淀粉糊的透明度,膨胀度提高,降低了糊化温度,峰值黏度增加,糊的抗凝沉性增强但热糊稳定性差;酸解乙酰化复合改性显著提高了淀粉糊的透明度,降低淀粉的膨胀度及糊化温度,峰值黏度显著降低,抗凝沉性明显增强,冷、热糊稳定性提高。扫描电镜、X衍射数据及红外图谱表明,3种变性处理均没有改变木薯淀粉的晶型和基本结构,颗粒形貌也没有发生显著变化。  相似文献   

13.
Sweet potato starches were modified with three different concentrations of phosphorus oxychloride (POCl3) (0.01, 0.02, and 0.03%, based on dry weight of starch) as a cross‐linking agent. The effects of crosslinking on rheological and thermal properties of sweet potato starch (SPS) pastes were evaluated. Cross‐linking considerably reduced the swelling power, consistency index (K), apparent viscosity (ηa), and yield stress (σoc) values of SPS, which significantly decreased with increase in POCl3 concentration. The gelatinization temperature (Tp) and enthalpy (ΔH) values of the cross‐linked SPS, which were determined using differential scanning calorimetry, were higher than those of native SPS. Storage modulus (G′), loss modulus (G″), and complex viscosity (η*) of the cross‐linked SPS pastes determined using small deformation oscillatory rheometry, were higher than native starch, and they also decreased with increase in POCl3 concentration from 0.01 to 0.03%. The tan δ (ratio of G″/G′) values (0.15–0.19) of the cross‐linked SPS samples were much lower than that (0.37) of the native SPS, indicating that the elastic properties of the SPS pastes were strongly influenced by modifications from cross‐linking. Finally, Cox–Merz plots showed that η* was much higher than ηa for the cross‐linked SPS pastes.  相似文献   

14.
Corn starch and starches separated from different potato cultivars were acetylated to evaluate the effect of plant source on the physicochemical, morphological, thermal, rheological, textural and retrogradation properties of the starches. Corn starch showed a lower degree of acetylation than potato starches under similar experimental conditions. The degree of acetylation for different potato starches also differed significantly. Morphological examination revealed that the granules of acetylated Kufri Chandermukhi and Kufri Sindhuri starches tended to appear as fused and less smooth than native starch granules. Acetylation of corn and potato starches decreased the transition temperatures and enthalpy of gelatinization and increased swelling power and light transmittance. However, the change in these was greater in the potato starches with higher percentage of small sized granules. Acetylated starches showed higher peak G', G'' and lower tan δ than their counterpart native starches during heating. Among the starches from different cultivars, the change in the rheological parameters after acetylation differed to a significant extent. The retrogradation was observed to be negligible in the acetylated cooked starch pastes. Results implied that the change in functional properties of starches with acetylation depends on source and granule morphology of native starch.  相似文献   

15.
根据膨胀度、糊化度及差示扫描量热仪(DSC)测得热力学参数,综合分析甘薯交联抗性淀粉和原淀粉热力学性质,并采用Jenkins提出In–vitro模型测定淀粉体外消化性。结果表明:在同一温度下,甘薯交联抗性淀粉膨胀度和糊化度均较原淀粉低,且交联剂用量越高,淀粉膨胀度和糊化度越小;DSC测试结果显示,甘薯交联抗性淀粉相转变温度To、Tp、Tc随交联剂用量增加而升高,Tc–To和△H均比原淀粉低。In–vitro消化模拟实验表明,甘薯交联抗性淀粉消化性比原淀粉低,并随交联剂含量增加,消化产物量减少,消化速度降低。  相似文献   

16.
Starches separated from four kidney bean cultivars were modified by acetylation to reduce retrogradation and increase gel stability and compared with respective native starches (data of native starch reported by Wani et al., 2010 ). Acetylation was carried out by treating starches with 0.04 and 0.08 g of acetic anhydride per gram of starch dry weight basis (dwb) at 25 °C and pH between 8.0 and 8.5. The extent of acetylation increased proportionally with the concentration of acetic anhydride used. The pasting curves of 10.7% starch determined by Rapid Visco Analyzer at 160 rpm showed that acetylation decreased the setback viscosity values by 0.64–34.58% and pasting temperature by 4.4–9.2 °C when compared with the native starch. Differential scanning calorimetry observations also revealed significant (P ≤ 0.05) decrease in gelatinisation temperature of acetylated starches than the corresponding native starches. Hardness of starch gels varied between 14.3 and 44.0 g, which was significantly (P ≤ 0.05) lower than the corresponding native starch gels.  相似文献   

17.
A method for the evaluation of freeze-thaw stability of starch gels is described and compared with refrigerated-storage retrogradation. Differential scanning calorimetry (DSC) is used to estimate the energy required to break down recrystallized starch molecules after 10 cycles of freezing-thawing or after storage at 4°C for 1 week. Different DSC properties were observed for different starches. Chemical modification decreased all DSC values for gelatinization except the gelatinization range of all modified starches examined. Rice and wheat starches displayed the lowest energies of gelatinization compared with other native starches studied. Most chemical modifications completely inhibited the recrystallization of starches during storage at 4°C or after 10 cycles of freeze-thaw. Mira-Cleer 340® (modified regular maize starch; hydroxypropyl distarch phosphate) had a slight recrystallization value. DSC endotherms for both recrystallization studies occured at considerably lower temperatures than those of the original gelatinization.  相似文献   

18.
Barley starch was acetylated at two levels (low degree: LD (0.9), and high degree: HD (2.7)) substitution and the morphological, physicochemical and structural of the resultant acetylated barley starch were determined. The acetylated barley starches presented the signal at 1226 cm−1 that corresponds to the C-O stretching of acetyl groups. The morphological study showed fusion of starch granules in the acetylated starch with HD. This effect was evident in the pasting test, because the viscoamylograph profile of HD starch showed the absence in peak viscosity, viscosity breakdown and viscosity setback. The peak gelatinization was similar for native and LD and decrease in the HD acetylated starch. The gelatinization enthalpy value showed difference among the samples, indicating that the loss of the ordered double helices more than the crystallinity loss was higher in the HD acetylated barley starch. In the retrogradation test, acetylation affected both retrogradation and enthalpy value, because acetylated barley starch with HD substitution at three storage days had 3.2 j/g and with LD 4.8 j/g. The molecular weight and z-average radius of gyration values decreased due to the acetylation process, indicating depolymerization of starch components as it was evidenced by the increase in short chains level in the acetylated samples.  相似文献   

19.
Starches separated from different potato cultivars were modified using two different cross‐linking agents: epichlorohydrin (EPI) and phosphoryl chloride (POCl3) at different concentrations (1.0 and 2.0 g kg?1 POCl3; 2.5, 5.0 and 10 g kg?1 EPI). Differential scanning calorimetry, rheological and retrogradation measurements were performed to characterise the influence of cross‐linking on the properties of potato starches. Cross‐linking considerably reduced swelling power, solubility, water‐binding capacity and paste clarity. The decrease became greater as the reagent concentration increased. The starches treated with 1.0 g kg?1 POCl3 exhibited exceptionally higher swelling power than their counterpart native starches. Neither cross‐linking agent caused any change in morphology of the starch granules. Studies on the phase transitions associated with the gelatinisation showed significantly higher values for the onset temperature (To), peak temperature (Tp), conclusion temperature (Tc) and enthalpy of gelatinisation (ΔHgel) for the cross‐linked starches than the native starches. Starches treated with both the reagents showed lower peak storage modulus (G′) and loss modulus (G″) than their native counterparts. The tendency of the starch pastes towards retrogradation increased considerably with increases in storage duration. However, the starches treated with 1 g kg?1 POCl3 exhibited much lower syneresis than the other cross‐linked starches. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
Acetylation of native hydrolyzed and oxidized, maize starch has been studied. The different factors affecting acetylation process were investigated. These factors include liquor ratio, acetic anhydride, perchloric acid concentration, reaction time and temperature. Also investigated were characterization and application of the acetylated starches in textile warp sizing. The acetyl content increases to reach a maximum and then decreases on increasing either liquor ratio or perchloric acid concentration. Also it increases with increasing acetic anhydride concentration within the range examined whereas the actylation reaction efficiency % decreases. Hydrolysis of starch prior acetylation inhances the susceptibility of the starch towards acetylation whereas oxidation do the reverse. The solubility of acetylated starches derived from hydrolyzed or oxidized starches increases more than that of acetylated native starch. The solubility depends on the extent of acetylation and of the modification prior acetylation. Acetylation of starch improves its sizeability of cotton yarns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号