首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents fracture mechanics based Artificial Neural Network (ANN) model to predict the fracture characteristics of high strength and ultra high strength concrete beams. Fracture characteristics include fracture energy (Gf), critical stress intensity factor (KIC) and critical crack tip opening displacement (CTODc). Failure load of the beam (Pmax) is also predicated by using ANN model. Characterization of mix and testing of beams of high strength and ultra strength concrete have been described. Methodologies for evaluation of fracture energy, critical stress intensity factor and critical crack tip opening displacement have been outlined. Back-propagation training technique has been employed for updating the weights of each layer based on the error in the network output. Levenberg- Marquardt algorithm has been used for feed-forward back-propagation. Four ANN models have been developed by using MATLAB software for training and prediction of fracture parameters and failure load. ANN has been trained with about 70% of the total 87 data sets and tested with about 30% of the total data sets. It is observed from the studies that the predicted values of Pmax, Gf, failure load, KIc and CTODc are in good agreement with those of the experimental values.  相似文献   

2.
3.
小尺寸混凝土试件双K断裂参数试验研究   总被引:4,自引:1,他引:4  
采用最大尺寸为680mm×160mm×40mm的标准三点弯曲梁试件,利用在初始裂缝两侧粘贴电阻应变片并利用混凝土裂缝扩展到此处时其应变回缩的方法测得了起裂荷载Pini,在此基础上根据Pini及初始缝长a0得到了起裂断裂韧度KIiCni;根据在试验中测得的最大荷载Pmax及对应的裂缝口张开位移CMODC计算了混凝土等效裂缝长度aC,据此计算了失稳断裂韧度KIuCn。结果表明:采用电阻应变片法可准确测定混凝土的起裂荷载Pini,且方法简单。试验结果还表明:在本试验范围内,三点弯曲梁法测得的混凝土双K断裂参数KIiCni、KIuCn与试件高度无关,进一步说明了混凝土双K断裂参数可以作为描述混凝土裂缝扩展的断裂参数。  相似文献   

4.
通过30个尺寸为100mm×100mm×515mm的聚丙烯纤维水泥稳定碎石和普通水泥稳定碎石三点弯曲试件断裂试验,探讨了聚丙烯纤维对水泥稳定碎石断裂韧度(KIC)、断裂能(GF)、临界裂缝嘴张开位移(CMODC)、临界裂缝尖端张开位移(CTODC)、极限裂缝嘴张开位移(CMODmax)和极限裂缝尖端张开位移(CTODmax)的影响。试验结果表明:聚丙烯纤维的掺入可增大水泥稳定碎石的断裂韧度、断裂能、临界裂缝嘴张开位移、极限裂缝嘴张开位移、临界裂缝尖端张开位移和极限裂缝尖端张开位移;随着聚丙烯纤维体积掺量的增加,断裂韧度、临界裂缝嘴张开位移和临界裂缝尖端位移的变化无明显规律,但断裂能、极限裂缝嘴张开位移和极限裂缝尖端位移基本上呈线性增加的。  相似文献   

5.
This paper deals with the development of models for prediction of facture parameters, namely, fracture energy and ultimate load of high strength and ultra high strength concrete based on Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM). MPMR is developed based on Minimax Probability Machine Classification (MPMC). ELM is the modified version of Single Hidden Layer Feed Foreword Network (SLFN). MPMR and ELM has been used as regression techniques. Mathematical models have been developed in the form of relation between several input variables such as beam dimensions, water cement ratio, compressive strength, split tensile strength, notch depth, and modulus of elasticity and output is fracture energy and ultimate load A total of 87 data sets (input-output pairs) are used, 61 of which are used to train the model and 26 are used to test the models. The data-sets used in this study are derived from experimental results. A comparative study has been presented between the developed MPMR and ELM models. The results showed that the developed models give reasonable performance for prediction of fracture energy and ultimate load.  相似文献   

6.
The paper presents simplified polynomial equations for determining the double‐K fracture parameters of concrete for 3‐point bending beams with variable strengths and material properties of concrete. The derived equations avoid complexities involved in computations of fracture parameters using existing analytical methods. The input data required for systematic computation in the study for deriving the nondimensional fracture parameters are obtained using a fictitious crack model. It is inferred that for a relative size of initial crack length, critical load and corresponding crack opening displacement maintain a linear relationship in their nondimensional forms. The value of critical mouth opening displacement can also be determined for known value of peak load using the derived nondimensional equation, thus avoiding the measurement of the crack mouth opening displacement in the experiment. Further, the derived polynomial equations predict the double‐K fracture parameters of concrete with negligible error as compared to those obtained based on experimental results.  相似文献   

7.
为了进一步研究泵头体高强钢25Cr2Ni4MoV和30CrNi2MoV的力学性能,采用拉伸、冲击和裂纹尖端张开位移(CTOD)试验对其进行测试。结果表明:材料在常温下具有较好的综合力学性能;在静载荷条件下,具有优良的断裂韧度。  相似文献   

8.
In the present study, Mode-I fracture tests of hybrid fiber reinforced concrete (HFRC) composite beams were conducted and the fracture properties and other post peak strength characteristics of the HFRC composites were evaluated and analyzed. The HFRC composite was produced using three types of fibers namely steel, Kevlar and polypropylene. A total of 27 HFRC composite beam specimens were cast and tested using the RILEM recommended three point bending test. The main variables were the fiber volume content and combinations of different fibers. The load versus crack mouth opening displacement (CMOD) curves of HFRC composite beams were obtained. Inverse analysis was carried out to determine the tensile strength and crack opening relationship. Analytical models based on comprehensive reinforcing index were developed for determining the influence of the fibers on fracture energy, flexural tensile strength, equivalent tensile strengths and residual tensile strengths of HFRC composites. Based on the experimental results and inverse analysis, a model for predicting the tensile softening diagram of HFRC composite mixes was also developed. The analytical models show conformity with the experimental results.  相似文献   

9.
Mode I crack propagation process of concrete under relatively low loading rates which cover four orders of magnitude (0.2 μm/s to 2.0 mm/s) is investigated with three‐point bending (TPB) beams. All measured material properties exhibit rate sensitivity and follow a log‐linear relationship with the loading rate. A rate‐sensitive softening curve is established. The complete load‐crack mouth opening displacement (P‐CMOD) curve, crack propagation length, and fracture process zone (FPZ) length are simulated based on crack growth criterion with the fitted material parameters under those loading rates. Results show that the simulated P‐CMOD curves agree well with those of experimental measurements. It is clear that the peak load increases with the loading rate and so is the critical crack mouth opening displacement. Moreover, under the same load level, the length of the FPZ and the cohesive stress at the initial crack tip also increase with the increasing loading rate.  相似文献   

10.
针对混凝土I型裂缝扩展问题,分别采用以起裂韧度为参数的裂缝扩展准则、最大拉应力准则以及裂尖处应力强度因子为零的裂缝扩展准则,数值模拟了强度等级C20、C40、C60、C80和C100的混凝土三点弯曲梁裂缝扩展全过程,获取了试件的荷载-裂缝口张开位移(P-CMOD)曲线并与试验结果进行了比较。结果表明,三种准则中以起裂韧度为参数的裂缝扩展准则计算得到的峰值荷载及P-CMOD全曲线与试验结果差别最小。随着混凝土强度等级的提高,最大拉应力准则以及裂尖处应力强度因子为零的裂缝扩展准则计算出的P-CMOD曲线与试验结果相比均有较为明显的偏离,但以起裂韧度为参数的裂缝扩展准则计算结果与试验曲线更为吻合。试验与计算结果表明,以起裂韧度为参数的裂缝扩展准则更适用于不同强度混凝土材料的断裂分析。  相似文献   

11.
The characterization of the softening curve from experimental results is essential for predicting the fracture behavior of quasi-brittle materials like concrete. Among various shapes (e.g. linear, exponential) to describe the softening behavior of concrete, the bilinear softening relationship has been extensively used and is the model of choice in this work. Currently, there is no consensus about the location of the kink point in the bilinear softening curve. In this study, the location of the kink point is proposed to be the stress at the critical crack tip opening displacement. Experimentally, the fracture parameters required to describe the bilinear softening curve can be determined with the “two-parameter fracture model” and the total work of fracture method based on a single concrete fracture test. The proposed location of the kink point compares well with the range of kink point locations reported in the literature, and is verified by plotting stress profiles along the expected fracture line obtained from numerical simulations with the cohesive zone model. Finally, prediction of experimental load versus crack mouth opening displacement curves validate the proposed location of the kink point for different concrete mixtures and also for geometrically similar specimens with the same concrete mixture. The experiments were performed on three-point bending specimens with concrete mixtures containing virgin coarse aggregate, recycled concrete coarse aggregate (RCA), and a 50-50 blend of RCA and virgin coarse aggregate. The verification and validation studies support the hypothesis of the kink point occurring at the critical crack tip opening displacement.  相似文献   

12.
In conventional analysis and design procedures of reinforced concrete structures, the ability of concrete to resist tension is neglected. Under cyclic loading, the tension-softening behavior of concrete influences its residual strength and subsequent crack propagation. The stability and the residual strength of a cracked reinforced concrete member under fatigue loading, depends on a number of factors such as, reinforcement ratio, specimen size, grade of concrete, fracture properties, and on the tension-softening behavior of concrete. In this work, a method is proposed to assess the residual strength of reinforced concrete beams subjected to cyclic loading. The crack extension resistance based approach is used for determining the condition for unstable crack propagation. The effect of reinforcement is modeled as a closing force counteracting the effect of crack opening produced by the external moment. The effect of percentage reinforcement and specimen size on the failure of reinforced beams is studied. Finally, the residual strength of the beams are computed by including the softening behavior of concrete.  相似文献   

13.
Crack Growth Across a Strength Mismatched Bimaterial Interface   总被引:3,自引:0,他引:3  
Crack growth across an interface between materials with different strength is examined by a cohesive zone model. The two materials have identical elastic properties but different fracture process properties, or different yield stresses, which is modeled by different cohesive stresses. The fracture criteria is a critical crack opening displacement. Load is represented by a stress intensity factor defining a remote square root singular stress field. The results show that the ratio between the cohesive stresses of the two materials primarily determines the behavior of the critical stress intensity factor. When the crack approaches a material with a higher cohesive stress the crack tip is shielded, but if the crack approaches a material with smaller critical crack opening displacement the maximum level of shielding is determined by the ratio between the critical crack opening displacements. When a crack approaches a material with a lower cohesive stress it is exposed to an amplified load. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
大初始缝高比混凝土试件双K断裂参数的试验研究   总被引:2,自引:0,他引:2  
荣华  董伟  吴智敏  范兴朗 《工程力学》2012,29(1):162-167
双K 断裂准则能够定量描述混凝土裂缝的起裂、稳定扩展和失稳断裂。该文采用混凝土三点弯曲梁试件,通过在试验中测得的起裂荷载Pini、最大荷载Pmax及临界裂缝口张开位移CMODC计算了初始缝高比为0.3~0.9共7组试件的起裂断裂韧度KICini 和失稳断裂韧度KICun 。结果表明,当初始缝高比为0.3~0.7时,混凝土裂缝扩展经历起裂、稳定扩展和失稳破坏3 个阶段,双K 参数均是与初始缝高比无关的材料参数;当初始缝高比大于或等于0.8 时,混凝土裂缝起裂后便进入失稳扩展阶段,起裂荷载即为最大荷载,且计算得到的KICini 仍与初始缝高比无关。因此,在确定KICini 时,仅需测得初始缝高比大于或等于0.8试件的Pmax,将Pmax作为Pini直接计算得到KICini。同以往的试验方法相比,其结果更为准确且试验方法简单。  相似文献   

15.
This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (KIcc), unstable fracture toughness (KIcun) and initiation fracture toughness (KIcini) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness KIcun of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.  相似文献   

16.
基于虚拟裂缝模型的混凝土等效断裂韧度   总被引:11,自引:2,他引:9  
本文采用虚拟裂缝模型,将临界裂缝尖端张开位移CTODc作为控制参数,利用三点弯曲梁试件通过迭代求得了混凝土裂缝亚临界扩展量的临界值△ac,据此求得了混凝土起裂断裂韧度KiniIc、等效断裂韧度KunIc值。计算结果表明,随着试件尺寸的增大,△ac增大,但KiniIc、KunIc值却是与试件尺寸无关的断裂参数。这表明线弹性断裂韧度准则可应用于混凝土结构的裂缝评定。  相似文献   

17.
A model that can be used to predict Mode I crack growth in cement-based composites is presented. The region ahead of a crack tip, where nonlinear deformations and aggregate interlock occur, is modeled as an extension of the actual stress-free crack subjected to a closing pressure that depends on the crack face displacements. In the case of concrete, crack propagation is assumed to occur when the crack opening displacement at the tip of the actual crack reaches a critical value. To predict results, the elastostatics problem of a layer containing a vertical edge crack was solved using a Green's function approach together with integral transform techniques. Stress intensity factors and crack opening displacements were obtained by numerically solving a singular integral equation. The closing pressure function and critical crack tip opening displacement were taken from experimental data for various materials, and the model was applied to the analysis of experiments performed on initially notched concrete and fiber-reinforced mortar beams.  相似文献   

18.
该文设计了3种低强度混凝土三点弯曲切口梁,测试研究其双K断裂参数。试验中采用标距为5 mm和10 mm的应变片以半桥连接方式测量预制裂缝的起裂荷载,比较其工作性,发现应变片测量起裂荷载具有强度敏感性,短标距应变片更适宜测量本试验用低强度混凝土的裂缝起裂。试验中另沿韧带方向布置4组半桥应变片,根据各测点处拉应变回缩时的荷载与裂缝口张开位移,计算裂缝发展至测点高度时刻的等效裂缝长度,并与此时的实际缝长比较,结果表明双K断裂模型在预测裂缝长度方面具有较好的适用性。  相似文献   

19.
A parametric experimental study has been conducted to investigate the effect of polypropylene fibers on the fracture properties of cement treated crushed rock (CTCR), which is a new pavement composite material. By means of three-point bending method, the fracture toughness, fracture energy, the ultimate deflection in span center, critical crack mouth opening displacement, critical crack tip opening displacement, maximum crack mouth opening displacement and maximum crack tip opening displacement of the specimen of CTCR reinforced with polypropylene fibers were measured respectively. The test results indicate that the addition of polypropylene fibers is helpful to improve the fracture properties of CTCR. Polypropylene fibers have great improvement on the fracture parameters of CTCR. Besides, the fracture parameters increase gradually and the fracture relational curves are becoming plumper and plumper when the fiber volume fraction increases from 0% to 0.1%. Furthermore, the capability of polypropylene fiber to resist crack propagation of CTCR appears to be becoming stronger and stronger with the increase of fiber volume fraction with the fiber volume fraction not beyond 0.1%.  相似文献   

20.
This paper presents a semi-analytical method to predict fatigue behavior in flexure of fiber reinforced concrete (FRC) based on the equilibrium of force in the critical cracked section. The model relies on the cyclic bridging law, the so-called stress–crack width relationship under cyclic tensile load as the fundamental constitutive relationship in tension. The numerical results in terms of fatigue crack length and crack mouth opening displacement as a function of load cycles are obtained for given maximum and minimum flexure load levels. Good correlation between experiments and the model predictions is found. Furthermore, the minimum load effect on the fatigue life of beams under bending load, which has been studied experimentally in the past, is simulated and a mechanism-based explanation is provided in theory. This basic analysis leads to the conclusion that the fatigue performance in flexure of FRC materials is strongly influenced by the cyclic stress–crack width relationship within the fracture zone. The optimum fatigue behavior of FRC structures in bending can be achieved by optimising the bond properties of aggregate–matrix and fiber–matrix interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号