首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

2.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

3.
Xin Xiao  Peng Zhang 《传热工程》2014,35(11-12):1084-1097
The charging and discharging characteristics of a latent thermal energy storage (LTES) system were experimentally studied. Pure paraffin and paraffin/expanded graphite (EG) composite containing 7% and 10% mass fraction of EG were used as the phase-change materials (PCMs). Various experiments were conducted with different heat transfer fluid (HTF) temperatures and flow rates for heat storage and retrieval, respectively. The time durations of the charging and discharging processes, the mean power, and the energy efficiency of the system, which are the important factors of the LTES system, were discussed. The results showed that natural convection played a crucial role in the heat transfer during the charging process of paraffin, but heat conduction was the main heat transfer mechanism during the discharging process of paraffin. The higher the flow rate was, the higher the charging and discharging rate would be. Large temperature difference between the HTF and the initial state of PCM would accelerate the charging and discharging processes. During the charging process, the large temperature difference would result in the accelerated phase-change process due to the enhanced natural convection that could be seen clearly when the PCM was paraffin. While no significant difference was found for different initial temperatures during the discharging process. The performance of the LTES was affected prominently by the PCMs, HTF temperatures, and flow rates. The energy efficiency was higher for the 10 wt% EG PCMs, and the mean power during the discharging process was larger accordingly.  相似文献   

4.
The effect of the inlet and outlet diffuser design on the performance of thermal stratification in a vertical water tank is investigated experimentally. Two sets of diffusers are used in the experiments, which are conducted with a moving thermocline (both up and down) for different flow rates. The results indicate that the preservation of the initial thermocline is excellent when using a settling mesh. It is also shown that the extraction efficiency of the tank is higher at low flow rates during charging, whereas it is lower at low flow rates during discharging.  相似文献   

5.
Long Jian-you 《Solar Energy》2008,82(11):977-985
This paper addresses a numerical and experimental investigation of a thermal energy storage unit involving phase change process dominated by heat conduction. The thermal energy storage unit involves a triplex concentric tube with phase change material (PCM) filling in the middle channel, with hot heat transfer fluid (HHTF) flowing outer channel during charging process and cold heat transfer fluid (CHTF) flowing inner channel during discharging process. A simple numerical method according to conversation of energy, called temperature & thermal resistance iteration method has been developed for the analysis of PCM solidification and melting in the triplex concentric tube. To test the physical validity of the numerical results, an experimental apparatus has been designed and built by which the effect of the inlet temperature and the flow rate of heat transfer fluid (HTF, including HHTF and CHTF) on the thermal energy storage has been studied. Comparison between the numerical predictions and the experimental data shows good agreement. Graphical results including fluid temperature and interface of solid and liquid phase of PCM versus time and axial position, time-wise variation of energy stored/released by the system were presented and discussed.  相似文献   

6.
为分析相变蓄热装置在充热和放热过程中的热性能,设计并搭建一套相变蓄热供热装置中试实验系统,研究主要运行参数对相变蓄热装置热性能的影响;在此基础上,结合项目案例,对相变蓄热供热系统经济性进行分析。结果表明:相变材料(Phase Change Material, PCM)凝固过程中的传热主要受相变介质内部导热控制;而在其熔化过程中自然对流对传热起重要控制作用;蓄热装置充热速率快于放热速率。提高传热流体流量有助于增强PCM中的热传递,缩短充/放热时间,但蓄热装置内PCM温度分布均匀性有所降低;为降低系统能耗,提高储放热效率,优先选用小流量进行充/放热。该相变蓄热供热项目的动态投资回收期为3.55年,具有良好的经济性。研究结果可对相变蓄热供热系统的设计及应用推广提供参考依据。  相似文献   

7.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

8.
Thermal conductivity enhancement in a latent heat storage system   总被引:3,自引:0,他引:3  
Latent heat storage systems especially those employing organic materials have been reported to exhibit a rather slow thermal response. This is mainly due to the relatively low thermal conductivity of organic latent heat materials. In this study, experiments were carried out to investigate a method of enhancing the thermal conductivity of paraffin wax by embedding aluminum powder in it. The size of the aluminum powder particles was 80 μm. The tested mass fractions in the PCM-aluminum composite material were 0.1, 0.3, 0.4, and 0.5 of aluminum. The used mass fraction in the experimental work was 0.5.The experiments were conducted by using a compact PCM solar collector. In this collector, the absorber-container unit performed the function of absorbing the solar energy and storing the phase change material (PCM). The solar energy was stored in the PCM and was discharged to cold water flowing in pipes located inside the PCM. Charging and discharging processes were carried out. The propagation of the melting and freezing fronts was studied during the charging and the discharging processes. The time wise temperatures of the PCM were recorded during the processes of charging and discharging. The solar intensity was recorded for the charging process. It was found that the charging time was reduced by approximately 60% by adding aluminum powder in the wax. In the discharging process, experiments were conducted for different water flow rates of 9-20.4 kg/h. It was found that the useful heat gained increased when adding aluminum powder in the wax as compared to the case of pure paraffin wax. The heat transfer characteristics were studied.  相似文献   

9.
A computational fluid dynamic (CFD) model for tubes in a phase change thermal energy storage system has been developed and validated with experimental results. The heat transfer fluid (HTF) flows in tubes which are configured in a unique arrangement during the charging and discharging processes. Water was used as the phase change material (PCM) which was contained in a cylindrical tank with four tubes coiled inside it. Experiments were conducted for both freezing and melting processes. A three-dimensional CFD model using Ansys code was developed and validated with experimental results. This model endeavoured to describe both the freezing and melting processes of the PCM. The inlet and outlet HTF temperatures as well as nine temperature locations in the PCM were compared with the CFD results. The average effectiveness as well as the duration of the phase change process of each experimental point was also compared with results from the CFD. From this study, it was concluded that the CFD model developed can accurately predict the behaviour of the thermal storage system during charging and discharging. The paper gives details of the CFD model and compares results from the model and experiments.  相似文献   

10.
为研究具有内置隔板的太阳能蓄热水箱隔板开孔尺寸及位置对其内部热分层效果的影响,对9种隔板开孔位置的太阳能蓄热水箱内温度场进行了数值分析,结果显示:在相同的流动参数及开孔面积条件下,隔板中心开1个圆孔的水箱热分层效果最好。对于多开孔的水箱,开孔位置对水箱内热分层影响不大,但对蓄热量影响显著。对于隔板中心开1个圆孔的水箱,在不同流动参数条件下,冷、热水出口温差随着冷水入口流速的增大呈先增后减的趋势,当冷水入口流速大于0.9 m/s时,减弱了热分层的稳定性。  相似文献   

11.
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13 kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.  相似文献   

12.
This work aims to evaluate the performance of an integrated phase change material (PCM) solar collector. The dynamic behavior of the system is investigated via a theoretical model based on the first law of thermodynamics and oriented to deliver a maximum outlet water temperature. A parametric study is used to assess the effects of the inlet water temperature, the PCM thicknesses and properties and the mass flow rates on the outlet water temperature and the melt fraction. A comparison with a conventional solar water heater without heat storage is made. Results indicate that charging and discharging processes of PCM offer six stages. It is observed that the complete solidification time is longer than the melting one. The latent heat storage system increases the heating requirements at night. The rise is most enhanced for higher inlet water temperature, melting PCM temperature and PCM thickness and for lower mass flow rate.  相似文献   

13.
Metallic solder based PCMs possess higher thermal conductivities, larger storage masses and exhibit lower subcooling effects compared to their organic or inorganic counterparts. It is thus justified to investigate their potential usage for medium temperature applications. These solders are relatively expensive and can be combined with cheaper PCMs in cascaded storage systems which are more thermodynamically efficient compared to single PCM systems as reported recently. The aim of the research is thus to compare two packed bed storage systems during discharging cycles using eutectic solder (Sn63/Pb37), that is widely available worldwide. The single PCM system (40 capsules) consists of encapsulated spheres of eutectic solder, whereas the second cascaded system consists of encapsulated spheres of eutectic solder and erythritol in an equal storage ratio in the tank. For the cascaded system, the eutectic solder capsules are placed at the top and erythritol at the bottom of the storage tank (20 capsules at the top and 20 at the bottom). The effect of the discharging flow-rates of 4 mL/s, 6 mL/s and 8 mL/s is investigated in relation to the temperature profiles, energy rates and exergy rates. Increasing the flow-rate, increases heat transfer rate thus shortening the discharging time as well as increasing thermal profile reversals during discharging. The peak energy and exergy rates increase with the increase in the flow-rate for the two storage systems. The single PCM system shows slightly higher average energy and exergy rates compared to the cascaded system possibly due to its higher thermal conductivity. The cascaded PCM system shows higher average stratification numbers at all the flow rates considered. The non-cascaded system exhibited slightly higher exergy recovery efficiencies compared to the cascaded PCM system possibly due to its higher thermal conductivity at all flow-rates considered. The effect of the initial discharging temperature is also investigated with a discharging flow-rate of 6 mL/s after charging with set heater temperatures of 260°C, 280°C and 300°C, respectively. Comparable thermal profiles are seen for both systems for the three set temperatures; however, the single PCM system shows slightly higher storage temperatures. The single PCM shows slightly higher but comparable peak and average discharging energy rates compared to the cascaded system. The exergy rates for the two systems are also comparable. However, the cascaded system shows slightly higher exergy rate values for the lowest set temperature whereas the single PCM system shows slightly higher exergy rate values for the other two set temperatures. Energy and exergy rates are almost independent of the initial storage tank temperatures induced by different set charging temperatures. The average stratification number shows no correlation with set temperature for both storage systems. The cascaded system shows slightly higher average stratification numbers at different set temperatures. Exergy recovery efficiencies for different set heater temperatures are comparable for the two storage systems and vary only marginally with the increase in the set temperature. Overall, the effect of the flow-rate is more pronounced than the effect of the set heater temperature.  相似文献   

14.
Thermal energy storage systems which keep warm and cold water separated by means of gravitational stratification have been found to be attractive in low and medium temperature thermal storage applications due to their simplicity and low cost. This effect is known as thermal stratification, and has been studied experimentally thoughtfully. This system stores sensible heat in water for short term applications. Adding PCM (phase change material) modules at the top of the water tank would give the system a higher storage density and compensate heat loss in the top layer because of the latent heat of PCM. Tests were performed under real operating conditions in a complete solar heating system that was constructed at the University of Lleida, Spain. In this work, new PCM-graphite compounds with optimized thermal properties were used, such as 80:20 weight percent ratio mixtures of paraffin and stearic acid (PS), paraffin and palmitic acid (PP), and stearic acid and myristic acid (SM). The solar domestic hot water (SDHW) tank used in the experiments had a 150 L water capacity. Three modules with a cylindrical geometry with an outer diameter of 0.176 m and a height of 0.315 m were used. In the cooling experiments, the average tank water temperature dropped below the PCM melting temperature range in about 6–12 h. During reheating experiments, the PCM could increase the temperature of 14–36 L of water at the upper part of the SDHW tank by 3–4 °C. This effect took place in 10–15 min. It can be concluded that PS gave the best results for thermal performance enhancement of the SDHW tank (74% efficiency).  相似文献   

15.
The charge/discharge rate of a spherical phase change material (PCM) capsule was assessed in consideration of phase change phenomenon and the combined effect of thermal radiation and heat convection in the charging/discharging processes. The heat transfer model was developed based on a single PCM capsule. The equivalent heat flux was evaluated by using the thermal resistance method. In consideration of the thermal radiation, the equivalent charge/discharge rate was improved, and the temperature rising of the PCM was actually much faster in the charging/discharging processes. It was indicated that the influence of the thermal radiation became more significant for PCM capsules under a small Re number (constant air velocity) and for high‐grade thermal energy storage. The analytical results showed that the highest heat flux contributed by cold thermal radiation occupied 30% and 62% of that by heat convection for PCM capsules with radius of 10 and 40 mm, respectively. This illustrated the crucial value of thermal radiation on the charge/discharge rate of PCM capsules with a large radius. However, for smaller size PCM capsules, the equivalent heat flux was larger under the same fluid flow velocity, and it decreased more promptly with time, because the heat convection that played the dominant role in charge/discharge processes was sensitively affected by the radius of the PCM capsules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The time mismatch between energy availability and energy demand with solar domestic hot water (SDHW) systems is often solved using energy storage. Energy storage systems typically employ water for thermal energy storage, however, water storage takes up considerable space and weight due to the large volumes required under certain conditions. A latent heat energy storage system (LHESS) may provide a valuable solution to the space and weight issue, while also correcting the energy mismatch by storing energy in phase change materials (PCMs) when it is available, dispensing energy when it is in demand, and acting as a heat exchanger when there is supply and demand simultaneously. PCMs are advantageous as energy storage materials due to their high energy density which reduces the space requirements for energy storage. However, heat transfer problems arise due to the inherently low thermal conductivity of PCMs. Simultaneous charging and discharging has not been addressed in literature making questionable the ability of a LHESS to operate as a heat exchanger during the mode of operation. The main objective of this research is to study the heat transfer processes and phase change behavior of a PCM during simultaneous charging and discharging of a LHESS.In Part 2 of this paper, experiments are performed using a vertical cylindrical LHESS which is charged and discharged simultaneously to replicate latent heat energy storage paired with a SDHW system with simultaneous energy supply and demand. Dodecanoic acid is used as the PCM. Experimental results for simultaneous operations are presented, under various scenarios and flow rates for both the hot and cold heat transfer fluids. The ability of the system to directly transfer heat between the hot and cold heat transfer fluids is studied, and the results found during consecutive, or separate, charging and discharging, presented in Part 1 of this paper, are compared to the results found during simultaneous charging and discharging. It was found that natural convection in the melted PCM clearly provides an advantage towards direct heat exchange between the hot and cold heat transfer fluid; while the low thermal conductivity of solid PCM provides a barrier to this direct energy exchange.  相似文献   

17.
《Energy》2006,31(14):2958-2968
The performance of a compact phase change material (PCM) solar collector based on latent heat storage was investigated. In this collector, the absorber plate–container unit performs the function of both absorbing the solar energy and storing PCM. The solar energy was stored in paraffin wax, which was used as a PCM, and was discharged to cold water flowing in pipes located inside the wax. The collector's effective area was assumed to be 1 m2 and its total volume was divided into 5 sectors. The experimental apparatus was designed to simulate one of the collector's sectors, with an apparatus-absorber effective area of 0.2 m2. Outdoor experiments were carried out to demonstrate the applicability of using a compact solar collector for water heating. The time-wise temperatures of the PCM were recorded during the processes of charging and discharging. The solar intensity was recorded during the charging process. Experiments were conducted for different water flow rates of 8.3–21.7 kg/h. The effect of the water flow rate on the useful heat gain (Qu) was studied. The heat transfer coefficients were calculated for the charging process. The propagation of the melting and freezing front was also studied during the charging and discharging processes. The experimental results showed that in the charging process, the average heat transfer coefficient increases sharply with increasing the molten layer thickness, as the natural convection grows strong. In the discharge process, the useful heat gain was found to increase as the water mass flow rate increases.  相似文献   

18.
相变微胶囊(microencapsulated phase change material,MPCM)在建筑节能领域应用广泛,为研究其传热特性,搭建了以水为换热流体(heat transfer fluid,HTF),微胶囊悬浮液为储能介质的潜热储能(latent thermal energy storage,LTES)系统。在实验过程中,通过改变换热流体的进口初始温度以及搅拌器的搅拌速率,获得了MPCM悬浮液的温度变化规律并计算了MPCM悬浮液的平均充放冷速率。实验结果表明:在充冷过程中,MPCM相变时温度变化速率减缓,相变温度区间较大,而在放冷过程中,MPCM相变时温度保持恒定,相变温度区间较小;未搅拌时,MPCM悬浮液中温度梯度较大,传热能力较差;搅拌时,MPCM悬浮液混合均匀,其温度梯度很小,传热能力较强;增加搅拌器的搅拌速率及水与相变微胶囊悬浮液的温差均可以提高MPCM的充放冷速率。  相似文献   

19.
本文将石蜡与膨胀石墨进行复合,并经过压制工艺做成板状膨胀石墨/石蜡(简称EG/PCM)复合材料,以解决石蜡导热性能差以及相变后变成液体流动的问题。用导热分析仪和差示扫描量热仪分别测试了EG/PCM复合材料的导热性能和潜热,并用扫描电镜表征了其微观结构。将EG/PCM复合材料应用于动力电池热管理系统,对单体电池和电池模块分别利用空气冷却和EG/PCM冷却后在1.0 C和1.5 C放电倍率下进行放电,并用温度巡检仪记录电池放电过程的温度情况,对比两种散热方式对动力电池的散热效果。  相似文献   

20.
This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system. The packed bed is composed of spherical capsules filled with paraffin wax as PCM usable with a solar water heating system. The model developed in this study uses the fundamental equations similar to those of Schumann, except that the phase change phenomena of PCM inside the capsules are analyzed by using enthalpy method. The equations are numerically solved, and the results obtained are used for the thermal performance analysis of both charging and discharging processes. The effects of the inlet heat transfer fluid temperature (Stefan number), mass flow rate and phase change temperature range on the thermal performance of the capsules of various radii have been investigated. The results indicate that for the proper modeling of performance of the system the phase change temperature range of the PCM must be accurately known, and should be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号