首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
人工蜂群算法是近年来提出的一种受生物行为启发的优化算法,该算法主要通过模拟蜜蜂的觅食来实现问题的求解。作为一种全局优化算法,人工蜂群算法有着较好的探寻能力,但其探索能力相对较弱。针对人工蜂群算法收敛速度缓慢的问题,提出基于scout蜂交叉觅食的改进人工蜂群算法。该算法通过交叉策略来指导scout蜂的觅食行为,避免了随机觅食带来的算法收敛速度缓慢的问题,提高算法的收敛速度。通过五个基准测试函数进行对比实验,结果表明新算法无论是在收敛速度、解的质量方面都优于标准人工蜂群算法,是一种有效的优化算法。  相似文献   

2.
改进人工蜂群算法   总被引:5,自引:0,他引:5  
针对人工蜂群算法存在的收敛速度慢、易陷入局部最优的缺点,利用自由搜索算法中的信息素、灵敏度模型代替传统的轮盘赌选择模型,并引入OBL策略产生新蜜源取代每次迭代的最差蜜源,提出了一种改进的人工蜂群算法,并结合NIT技术建立一种新的多峰优化方法.对9个标准测试函数仿真表明本文提出的改进算法不仅大大提高了最优解的精度而且缩短了运行时间,改进性能明显优于现有人工蜂群算法.实例测试表明该方法能够有效、精确地搜索各个峰值点.  相似文献   

3.
从经典人工蜂群算法机制出发,针对原始算法在初始种群构造、子种群分组、步长更新和种群淘汰方面的不足进行了改进.新算法运用均匀设计理论构造初始种群,提出了一种种群交叉的Z型分组方法,设计了一种对数函数自适应步长代替原来的随机步长,引入了小生境技术及时淘汰陷入局部最优的个体.实验结果表明,改进后的算法有效地解决了人工蜂群算法早熟收敛、搜索速度较慢等问题,并提高了解的精度.  相似文献   

4.
基于记忆的人工蜂群算法(ABCM)通过记住成功使用的邻居和系数指导人工蜂群下一步的搜索,需消耗多次函数评价收敛到吸引子,且始终使用与上次相同的排斥系数,造成收敛速度不快、多样性不足,易陷入局部最优解.提出一种改进ABCM(IABCM),当使用吸引系数时,候选解只消耗一次函数评价收敛到吸引子,如果候选解好于当前解,则替换当前解,否则直接删除该记忆,这样可以利用尽量小的代价得到尽量大的收益.当使用排斥系数时,该系数的数值部分重新随机生成,以增加多样性和随机性,有利于算法跳出局部最优解.在22个不同类型函数上的实验表明,IABCM在收敛速度和精度方面明显优于ABCM.  相似文献   

5.
混沌局部搜索策略的差分进化算法   总被引:1,自引:0,他引:1  
提出了一种应用混沌局部搜索策略的差分进化算法(CLSDE),在每一代中通过DE/best/2/bin形式的差分进化算法找到最佳个体,然后在最佳个体的附近用混沌的方法进行局部搜索.6个基本测试函数的优化结果表明:CLSDE寻优结果得到的最大值、最小值、平均值、标准差都比DE/best/2/bin好,而且收敛速度比DE/best/2/bin快.  相似文献   

6.
针对人工蜂群算法易陷入局部最优值、进化后期收敛速度慢等问题,为提高蜂群的多样性和搜索的遍历性,该文在人工蜂群算法中引入混沌思想,提出了一种混沌人工蜂群算法,并将其应用到色彩图像量化当中.仿真结果表明混沌人工蜂群算法改善了人工蜂群算法摆脱局部最优值的能力,提高了算法的收敛速度和精度,同时量化后的图像也具有更高的信息熵,保...  相似文献   

7.
《南昌水专学报》2015,(1):18-24
针对标准的粒子群算法和人工蜂群算法收敛性能差、在复杂优化问题易陷入局部最优的缺点,提出了一种改进的融合算法.改进融合算法拥有双种群并行进化,其中粒子群采用改进的反向学习策略,以增加群体的多样性;蜂群中跟随蜂根据个体停滞次数,自适应地改变进化策略,以平衡全局探索与局部开发能力.同时算法将交替共享两个种群的全局最优位置,通过相互引导使融合算法具有更好的寻优能力.8个经典函数和CEC2013的8个复合函数的实验结果表明,与最新的一些改进粒子群和人工蜂群算法相比,该算法的收敛速度和收敛精度均有较显著的优势.  相似文献   

8.
针对基本人工蜂群算法求解优化问题时存在收敛精度低、搜索盲目性大的缺点,提出一种基于最速下降法改进的人工蜂群算法.算法利用最速下降法简单、计算量小的特点,对基本人工蜂群算法中经过limit次更新后没有得到改善的蜜源进行更新,它结合了基本人工蜂群算法较强的全局搜索能力和最速下降法快速精确的局部搜索能力,能够有效避免基本人工蜂群算法中的某些盲目的无意义迭代.经过9个标准测试问题的仿真试验表明,所得的人工蜂群算法具有比基本人工蜂群算法更快的收敛速度和更高的求解精度.  相似文献   

9.
分析了人工蜂群算法及部分国内外学者提出的改进算法,针对局部搜索能力差和容易陷入局部最优解的缺点,根据马尔可夫链预测已知解空间的发展趋势,提出了一种基于马尔可夫链的改进人工蜂群算法(MABC),通过伪代码给出了算法的运行过程,从收敛性能和算法复杂度2个方面分析了人工蜂群算法、一种典型的改进算法和MABC算法的性能.最后以10个典型函数为测试用例,从结果精度、收敛速度、分割参数和运行时间4个方面进行验证,实验结果表明,MABC算法在求解精度和收敛速度上高于ABC算法,但运行时间略长,验证了理论分析的结果.  相似文献   

10.
讨论了遗传算法的优点及存在的局限性。通过引进混沌搜索策略,对遗传算法的初始种群进行混沌搜索,筛选出优化种群。并将遗传算法作为小波神经网络的学习算法,再次运用混沌搜索策略,对学习过程进行优化。改进后的遗传学习算法结合小波神经网络应用于混沌时间序列预测,实验取得了较好的效果。  相似文献   

11.
针对人工蜂群(ABC)算法在解决复杂优化问题时容易出现收敛速度慢、开采能力不足的问题,提出了一种精英区域学习的转轴人工蜂群(ERABC)算法。在ERABC算法中,通过执行区域学习方法构建精英池,并利用精英池改进其搜索策略,同时在每一代中以一定的频率对最优解执行转轴法(RM)局部搜索。在20个包含单峰、多峰和偏移函数的基准测试函数上,分析了ERABC算法中改进策略的有效性,并与多种新近的改进ABC算法和演化算法进行了比较实验。实验结果表明,提出的算法在保证精英池中个体多样性的同时加快了算法的收敛速度,RM有效地提高了算法的开采能力。  相似文献   

12.
合理确定地层岩性对合理选择钻头类型、快速建立岩性剖面、及时发现油气层和卡准取心层位有着重要意义。以录井资料为基础,结合已钻井的测井资料,根据BP神经网络和人工蜂群算法,建立基于BP神经网络算法的人工蜂群算法模型。应用该模型在青海油田某区块进行地层岩性随钻识别试验,试验结果与测井资料解释结果相比,符合率可达91.35%。  相似文献   

13.
人工蜂群算法是一种启发式算法,通过模拟自然界蜂群觅食过程来解决现实中的优化问题。算法中将每只蜜蜂看做一个智能体,若干智能体间相互合作,高效地完成对目标的搜索、优化。总结人工蜂群算法用于解决组合优化问题的一般方法,以O-1背包问题为例对算法进行仿真测试,实验结果表明:人工蜂群算法有效且优于存在的蚁群算法。  相似文献   

14.
人工蜂群算法是群体智能算法中新的分支.本文针对人工蜂群算法的建模思想和算法的框架结构设计方法进行了分析和研究,并针对实际问题编程完成问题的求解.实践表明,人工蜂群算法具有较高的灵活性和适应性.  相似文献   

15.
Web服务技术的快速发展使用户对QoS (quality of service)越来越关注。为了进行基于QoS的Web服务组合优化,采用4种典型的QoS衡量指标建立了组合Web服务QoS量化模型;针对人工蜂群(artificial bee colony ,ABC)算法搜索效率不高和过早收敛问题,引入禁忌策略和混沌优化进行了改进,并将改进算法用于组合Web服务的QoS优化;最后,通过仿真实验对模型和算法进行了验证。结果表明,改进算法全局优化能力全面提高,并且能较好地解决组合Web服务QoS全局优化问题。  相似文献   

16.
针对大型舰船方案设计的具体特点,选择了飞行甲板面积最大化、初稳性高最合理化、估算阻力最小化和横摇固有周期最大化等4个优化目标,建立了适用于大型舰船主尺度优化设计的多目标模型,并基于最小偏差法建立了统一的目标函数。采用人工蜂群算法对优化模型进行了求解,并对人工蜂群算法的初始化方法和观察蜂的选择机制进行了改进,通过仿真计算,验证了人工蜂群算法求解复杂问题的优越性和改进策略的合理性,以及该算法在船舶设计中应用的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号