首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for analyzing the losses and the torque of an induction motor with a double cage rotor is presented. The tentative values for the currents for the analysis are found using an analytical procedure. The parameters of an equivalent circuit are then calculated by means of a finite-element method. The actual current distribution in the rotor bars, including the eddy current distribution, results from the finite-element solution. New current estimates are found from the obtained circuit and are used to establish a corrected field distribution. Using the losses due to eddy currents, the equivalent resistance of the rotor may be calculated, and using the rotor losses, the torques are calculated. Assuming linearity, the complex power yields the inductances. The resulting equivalent circuit can then yield a better estimate for the current. This constitutes an iterative procedure which can be continued to any desired convergence accuracy for the currents  相似文献   

2.
This paper presents a methodology for a convenient modification of induction motor equivalent circuit parameters, taking into consideration switching frequency iron losses in case of inverter supply. The method is based on the determination of harmonic iron losses in laminated iron cores under nonsinusoidal excitation by using a particular three-dimensional (3-D) finite-element model adopting a reduced scalar potential formulation. Eddy currents in iron laminations are considered by means of convenient surface current densities. Experimental verification is performed in case of a 20-kW experimental setup.  相似文献   

3.
The effects of varying the modulation index and the switching frequency on steel lamination core losses when excited with pulse width modulated waveforms are first investigated. A switched reluctance motor flux model is also developed and flux waveforms for different parts of the machine are synthesized. Using these flux waveforms, the paper presents the loss trend inside a switched reluctance machine, showing the core loss variation of the machine. The rotor was found to incur higher losses than any other part inside the switched reluctance motor. The paper further identifies the flux density harmonics that contribute to higher core losses in the rotor. Using the Fourier series, an attempt to predict core losses under switched reluctance motor flux density waveforms is done and the predicted results are compared with measurements. An Epstein frame was used for direct core loss measurements on 0.0140 in. [0.36 mm] commercial electrical steel; the methods and test bench used, along with test results are detailed in the paper.  相似文献   

4.
A detailed field distribution in a reluctance augmented shaded-pole motor using the finite-element method is presented. No-load and loaded cases are considered separately. The effect of the shading coil on the spatial distribution of the air-gap flux density is examined, and it is found that the demagnetizing effect of the shading rings contributes to a more uniform distribution of the air-gap flux. Correct paths of various flux linkages and saturating regions are identified. The iron losses are computed using the flux density distribution obtained over the cross section of the machine  相似文献   

5.
The application of analytical and numerical methods to an electromagnetic problem requiring an accurate representation of saturation is examined. The problem considered is that of tooth-ripple losses in salient-pole synchronous machines for the situation where the pole pitch is much greater than the armature slot pitch so that the applied DC field can be taken as uniform. To calculate these losses, several analytical methods have been developed over a period of many years. Two such methods, one devised by Oberretl (1972) and a modified version of the considerably older one-dimensional approach of Gibbs (1947), are compared with results obtained from the finite-element and finite-difference methods. Using a time-stepping finite-difference calculation, the influence of moving boundaries and the imposed DC field are taken into account for the first time in this tooth-ripple calculation. A saturation factor is defined that allows the designer to calculate the tooth-ripple losses of solid salient-pole synchronous machines for a wide range of machine size taking magnetic saturation into account. To verify the theory, the results are compared with measurements on a small model. These measurements were done using a torque meter placed between the model and a DC drive motor and were cross-checked by the Poynting vector method. Rules and limits are given for the use of the analytical methods  相似文献   

6.
The interior permanent magnet (IPM) motor with its robust rotor construction, hybrid torque production nature and flux-weakening capability is suitable for electric vehicle applications when wide speed and torque range is required. At high-speed operations, core losses become an important issue because they affect efficiency and raise operating temperatures. This paper discusses the results of two-dimensional finite element analysis into the relationship between flux distribution and core losses in the IPM motor. The analysis is further supported by flux measurements using search coils installed in an experimental motor. Three methods of predicting the core losses in IPM motor are also investigated. These methods are the empirical formula method, finite element computed waveform method and the search coil induced voltage method  相似文献   

7.
An equivalent circuit of universal motors is developed, based on the design data. After representing the magnetomotive force distribution in the air gap, an analytical expression of the flux linkage of the armature winding coils is derived; this allows for the determination of the expressions of the speed and transformer EMFs induced in the armature winding and their representation by means of circuit parameters, as a function of the magnetic core saturation. The motor performances are computed, using the circuit parameters determined both analytically (by the design data) and by measurements. Some quantities are also compared with the ones obtained by finite-element analyses. Finally, the model is validated by experimental tests.  相似文献   

8.
Considering motional effects in the steady-state finite-element simulation of single-phase induction machines inevitably requires a transient approach. The resulting computation time seriously hampers the application of finite elements within technical designs. In this paper, time-harmonic finite-element simulation, as commonly applied to the three-phase induction machine model, is also enabled for single-phase motors by decomposing the air-gap field in two revolving fields in the opposite direction. The advantages and drawbacks of the novel approach are illustrated by a benchmark model. Issues such as ferromagnetic saturation, external circuit coupling, adaptive mesh refinement, and torque computation are addressed. The method is used to simulate a capacitor start/run motor.  相似文献   

9.
Single-phase line-start permanent magnet (LSPM) synchronous motors have always been far less amenable to detailed computer-aided performance analysis compared with three-phase LSPM synchronous motors. The main reason is the lack of an accurate mathematical model of the motor characteristics arising from the unbalanced stator field and the rotor saliency. However, there is great potential for these types of motors to replace conventional single-phase induction motors in many domestic applications on account of their higher efficiencies when properly designed. In this paper, a new model that is applicable to both synchronous and asynchronous operation of the motor is proposed in which the parameters can be readily obtained by the two-dimensional (2-D) static finite-element method (FEM). It includes both the forward and backward rotating magnetic fields. It can be used to analyze the torque versus slip characteristics and predict the steady-state performances of the motor quickly with reasonable accuracy. The model has also been extended to simulate the transient start-up process and other dynamic performances. The models are suitable for the initial design and optimization of the motor geometry because of its low run-time overheads. Experimental results have verified the practicability of the models.  相似文献   

10.
A method for computation of the parameters and performance of permanent-magnet brushless DC motor drives is developed in which the concept of skewing is implemented through the geometries of permanent magnet mounting on the rotor and not through the usual skewing of the armature slots. This technique of permanent-magnet mounting eliminates the 2-D axial symmetry in the resulting magnetic fields. This difficulty is overcome by the use of multiple cross-sectional 2-D finite-element field computations, coupled with a concept of an artificial mutual-coupling inductance between the armature phase windings and the rotor-mounted permanent magnets for induced EMF and torque computations. The computed induced EMF waveforms, motor phase winding current waveforms, and other performance characteristics are found to be in excellent agreement with test data obtained using a 1.2 hp, 120 V brushless DC motor drive system  相似文献   

11.
In this paper, effects of rotor abnormalities such as broken squirrel-cage bars, broken cage connectors and airgap eccentricity on ohmic and core losses of induction motors are presented. In this investigation, a comprehensive time-stepping coupled finite element-state space (TSCFE-SS) model was fully utilized to compute the time-domain elemental flux density waveforms and various time-domain waveforms of motor winding currents useful for core loss and ohmic loss computations. Such investigation is feasible by use of the TSCFE-SS model due to its intrinsic nature and characteristics. The results obtained from the simulations of an example 1.2-hp induction motor clearly indicate that faults due to broken squirrel-cage bars/end-connectors can increase motor core losses in comparison to the healthy case. The results also give the effect of saturation on the core loss distributions within the cross-section of the motor, and indicate the potential for possible excessive loss concentrations and consequent hot spots near zones of bar and connector breakages in the rotor  相似文献   

12.
This paper estimates motor life when a motor is supplied with a combination of over- or undervoltages with unbalanced voltages. The motor life is predicted by estimating the stator winding insulation life of squirrel cage motors using Arrhenius' equations. Electrical and thermal models are used to calculate motor losses and temperatures, respectively. The thermal model parameters are obtained from simple motor testing techniques rather than from complex methods requiring motor design data  相似文献   

13.
This paper discusses rotational losses and how they are produced in the core materials of induction motors. These losses are largely caused by flux that rotates in the plane of the machine laminations. This suggests that steel specification for applications to rotating machines should be given in terms of rotational loss data as a material characteristic, in much the same fashion as Epstein test results are provided for alternating losses. If a standardized test for rotational losses were to be used, steel producers could rationally investigate the effects of composition and processing variables. This is necessary in order to produce low loss steels for motor applications. Reduction of rotational losses in motor cores could significantly lower AC machine operating costs and contribute to the growing interest and design of high efficiency induction motors. The paper describes a test procedure for determining rotational losses in a sample. It then compares the results with standardized tests from an Epstein test procedure. It is seen that there are significant differences in loss results obtained for the rotational test versus the alternating current test. The authors have investigated a time harmonic finite element formulation utilizing Magnet 2D, a commercially available package. The paper includes a brief analysis of a typical problem using this tool  相似文献   

14.
A rotating magnetic field model of the axial induction motor is developed relating the geometric properties of the stator/rotor core. The main geometric dimensions of different type induction motors are compared using the field model formulas. An axial induction motor constant is derived from the output power formula. A new expression for the output power per unit volume is achieved by means of main dimensions and construction modification. A flowchart with stationary input data anticipates the assigned computed parameters of the axial induction motor.  相似文献   

15.
This paper presents an analytical model suitable for analyzing permanent magnet motors with slotted stator core. By including the effect of the interaction between the pole transitions and slot openings, the model is able to predict the airgap field and magnetic forces with high accuracy, which cannot be achieved using the previously available analytical methods. The results of electromagnetic forces, i.e., the cogging torque and unbalanced magnetic pull, computed analytically agree well with numerical simulations using the finite-element method. The model is used to analyze the magnetic forces developed in permanent magnet brushless motors when the design parameters vary in wide ranges. The model is useful in design and optimization of permanent magnet motors.   相似文献   

16.
An integrated magnetic field-network computer-aided method is presented, and is verified here by applying it in the determination of the performance of an electronically commutated permanent magnet motor system, and comparing the results with test results at rated operating conditions. Test results were found to be in very good agreement with numerical simulation data. At the core of this method are the instantaneous calculation of the magnetic field distribution within the machine, using the finite element method, and the determination of the winding inductances from these field solutions with the aid of an energy perturbation technique. The armature induced emfs are also obtained from these field solutions. These winding parameters, which are load dependent, are used in a nonlinear time domain network model of first order differential equations governing the dynamic performance of the motor to solve for the instantaneous phase currents. These new currents are then used at every time instant to determine the corresponding machine winding parameters, and the above process is repeated at successive time instants until the complete analysis period is covered. Though the validity of this method of analysis is verified in this paper by applying it to a 15 hp (11.2kw), 120 volt electronically commutated brushless dc motor system operating under normal and balanced conditions, the real utility of the method lies in its ability to analyze these motor systems under unbalanced partial or total component failure (fault) in the windings and associated conditioners. This type of application is given in a companion paper.  相似文献   

17.
Vector control accuracy of induction motor drives is affected by variations of motor parameters that are treated in the control algorithm as constant values, and by the phenomena that are not modeled at all and are therefore unaccounted for in the controller. Detuning sources of the first type include variations of rotor and stator resistance, mutual inductance, and leakage inductances, while the second category includes stator iron (core) losses. All these sources of detuned operation have been studied in a considerable depth in the past. It appears that the only potential source of detuned operation, which has never been studied before, is the stray load loss (SLL), which belongs to the category of unmodeled phenomena. This paper develops an analytical model that characterizes detuning due to SLLs in indirect rotor-flux-oriented (RFO) current-fed induction motor drives in steady-state operation by means of the orientation angle error, actual to reference rotor-flux ratio, and actual to reference-torque ratio. A quantitative assessment of the impact of SLL on accuracy of rotor-flux-oriented control is performed, with the necessary motor parameters obtained from IEEE 112-B standard measurements and subsequent equivalent circuit parameter fitting. Detuning is also examined in transient operation. It is shown that, although SLLs are comparable to the iron losses in the studied machine (of approximately the same value in the rated operating point), their impact on accuracy of vector control is much smaller when compared to the iron loss induced detuning.  相似文献   

18.
A time-domain parameter calculation of a turbogenerator state-space model is presented. The finite-element (FE) method has been used to simulate a two-dimensional (2-D) nonlinear transient condition of the turbogenerator. An open-circuit transient excitation of the machine in closed-loop conditions (excitation system and unloaded synchronous generator) was reproduced to extract flux linkages, power losses, and eddy currents produced within the generator, which allowed the computation of the parameters of an electrical circuit. An electrical circuit structure with one d-axis damper winding is proposed. New parameter behavior profiles were found for the fictitious damper winding, and the saturation effects on the field winding reactance were determined. FE commercial software is employed during the research as a validation tool. It is found that the simulated time-domain response of the lumped model closely follows the time-stepping FE model. The research was carried out for a large turbine generator of 150 MVA, 13.8 kV, 50 Hz, and two poles.  相似文献   

19.
This paper deals with the design criteria for a high-efficiency permanent magnet synchronous motor. The goal is not pursued by a trivial reduction of the electric and magnetic loadings (which decrease motor losses) but optimizing a set of motor design variables, without increasing the overall dimensions, which are typically imposed as design constraints. The effect of the number of slots and of the inner-to-outer diameter ratio on motor losses is investigated. The possibility of designing a stator with a tooth length lower than the total core length, using soft magnetic composites, is studied. Finally, a criterion is proposed to evaluate the convenience of using a nonoverlapping winding. An analytical approach is adopted so as to allows the obtained results to be useful for a wide variety of permanent magnet machines.  相似文献   

20.
The industrial sector is the largest users of energy around the world. Industrial motor uses a major fraction of total industrial energy uses. This paper describes a comprehensive literature review about electric motor energy analysis. This paper compiles latest literatures in terms of thesis (MS and PhD), journal articles, conference proceedings, web materials, reports, books, handbooks on electrical motor energy use, losses, efficiency, energy savings strategies. Different types of losses that occur in a motor have been identified and ways to overcome these losses explained. An energy audit that helps to identify motor energy wastages have been discussed extensively. As motors are the major energy users, different energy savings strategies such as use of high-efficient motor, variable speed drive (VSD), and capacitor bank to improve the power factor to reduce their energy uses have reviewed. Different policy measures (i.e. regulatory, voluntary and incentives based) to save motor energy use have been reviewed and presented in this paper. In this review, computer tools that can be used to analyze electric motors energy used has been discussed. Cost parameters to carry out economic analysis have been shown as well. Moreover, payback period for different energy savings strategies have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号