首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文通过水泥净浆、砂浆试验,研究了柠檬酸钠对普通硅酸盐水泥与硫铝酸盐水泥复配体系净浆的凝结时间、砂浆流动度和拉伸粘结强度、水泥水化产物的影响。研究表明,柠檬酸钠通过抑制铝酸钙、硫铝酸钙的早期水化,延缓复配体系的凝结时间、改善砂浆流动性,柠檬酸钠掺量为1.2%时,初凝时间与终凝时间分别为106 min、118 min,砂浆的流动度达到最大值为157 mm;柠檬酸钠使水泥后期水化更充分,增加钙矾石的生成量,提高砂浆拉伸粘结强度,柠檬酸钠掺入量为1.0%时,砂浆拉伸粘结强度为0.54 MPa。  相似文献   

2.
研究了丁苯(SBR)乳液掺量对硫铝酸盐水泥流变性能、水化放热及水化产物的影响.结果表明,当SBR乳液掺量超过20%时,硫铝酸盐水泥净浆的固含量增大,聚合物加速聚集黏附,增加了净浆的屈服应力和塑性黏度,缩短了净浆的凝结时间并增大了浆体的水化放热,钙矾石随着SBR乳液掺量的增大逐渐增多,促进了硫铝酸盐水泥的早期水化进程.  相似文献   

3.
硫铝酸盐水泥性能的调整与应用   总被引:1,自引:0,他引:1  
陈娟  卢亦炎 《混凝土》2007,(9):54-56
研究了普通硅酸盐水泥、化学外加剂和可再分散乳胶粉对硫铝酸盐水泥性能的影响,结果表明在硫铝酸盐水泥中掺人普通硅酸盐水泥或化学外加剂或可再分散乳胶粉能调整硫铝酸盐水泥的凝结时间和强度性能,可以根据不同的实际要求将改性后的硫铝酸盐水泥应用于特殊工程.  相似文献   

4.
研究了在不同普通硅酸盐水泥掺量下,硫铝酸盐水泥基复合胶凝材料的流动度,凝结时间和水泥砂浆强度性能的影响。研究结果表明:普通硅酸盐水泥掺量小于50%时,普硅水泥-低碱度硫铝酸盐水泥混合体系的凝结时间和流动度随着普硅水泥掺量的增加而减小。随普通硅酸盐水泥掺量的增加,复合水泥砂浆的强度先减小后增大,当掺量为40%时水泥砂浆的强度达到了最大值。利用XRD和SEM微观测试手段对硫铝酸盐水泥基复合胶凝材料的水化产物和水化机理进行了分析和讨论。  相似文献   

5.
范昭昂  李秋义  郭远新  岳公冰 《混凝土》2023,(2):105-108+113
掺加矿物掺合料是降低高贝利特硫铝酸盐水泥(HB-SAC)混凝土的生产成本并改善其凝结硬化性能的有效措施。研究了水灰比为0.5时,矿粉(MP)、粉煤灰(FA)对高贝利特硫铝酸盐水泥抗压强度、砂浆流动度、标准稠度用水量、凝结时间的影响;并通过XRD、SEM对掺加不同矿物掺合料的高贝利特硫铝酸盐水泥净浆进行分析。结果表明:掺加矿物掺合料延长了高贝利特硫铝酸盐水泥的凝结时间;水泥浆体标准稠度用水量随矿物掺合料掺量的增加呈先减小后增大趋势,掺量为10%时达到最小值;掺加矿物掺合料后水泥砂浆流动度变大,粉煤灰对砂浆流动度的影响显著;当掺量从0增加至30%时,掺加矿粉抗压强度降低15.4%,掺加粉煤灰抗压强度降低27.6%;掺矿粉、粉煤灰后,水泥浆体中C-S-H凝胶数量增加,其他水化产物无明显变化。  相似文献   

6.
通过分析水泥乳化沥青砂浆(CA砂浆)冬季低温病害的产生原因,研究了硫铝酸盐水泥、胶乳对CA砂浆低温凝结和灌注质量的影响。结果表明,低温导致CA砂浆超长缓凝,使体系稳定性变差,并引起泌水和揭板起皮等病害;掺入硫铝水泥能加快CA砂浆的低温凝结过程,随替代量增加,凝结时间逐渐缩短;随温度升高,胶乳水泥流态体系可搅拌时间呈降低趋势,选用低温稠化性能合适的的胶乳,可改善新拌CA砂浆的低温均匀稳定性;复掺10%硫铝水泥和8%胶乳的CA砂浆在24h的强度和膨胀率符合要求,在实测0.5~7.7℃的低温环境中,揭板检查CA砂浆断面均匀、表面平整无起皮,符合上道要求。  相似文献   

7.
研究了硼酸、葡萄糖酸钠等对硫铝酸盐水泥凝结时间的影响,并将二者与聚羧酸盐系减水剂等按一定比例复合,制备出用于硫铝酸盐水泥的缓凝保塑高效减水剂WUT-G(Ⅱ);分析研究了WUT-G(Ⅱ)一定掺量时硫铝酸盐水泥净浆流动度、凝结时间、强度等性能,并对其水化样进行了XRD、SEM分析测试.结果表明WUT-G(Ⅱ)对硫铝酸盐水泥具有优异的缓凝和减水作用,利用WUT-G(Ⅱ)配制的C50硫铝酸盐水泥混凝土也表现出良好的工作性.  相似文献   

8.
研制一种道路修补砂浆。通过比较硅酸盐水泥和铝酸盐水泥不同配比时的凝结时间和砂浆力学性能,初步确定了具有较高早期强度的复配水泥砂浆的配比。在复配水泥砂浆中掺加丁苯聚合物乳液进一步改性。结果表明:改性砂浆早期抗压和抗折强度较低,后期强度有较大持续的增长;聚合物乳液能提高改性砂浆的抗折强度和粘接强度,降低压折比;随着聚合物乳液掺量的增加,耐磨度先下降,后提高。综合考虑,在铝酸盐水泥中掺加20%的硅酸盐水泥,聚合物乳液掺量为5%~10%,水灰比0.26~0.30,砂灰比2.0~3.0时,可得到一种较为理想的道路修补材料。  相似文献   

9.
实验以普通硅酸盐水泥和硫铝酸盐水泥复合胶凝体系为基体材料,以高炉粒化矿渣作为掺合料,掺加早强剂、消泡剂、减水剂等外加剂制备无收缩水泥基灌浆材料。试验采用单一变量法,分析各组分的掺量对水泥基无收缩灌浆砂浆体系流动度、凝结时间等新拌性能以及力学性能、膨胀性能等硬化性能的影响,确定各组分的最佳掺量,并利用X射线衍射分析、扫描电镜等现代材料测试方法对砂浆的微观结构和水化产物进行研究。  相似文献   

10.
采用环氧树脂乳液对硫铝酸盐水泥基水下修补砂浆进行改性,研究了聚灰比对修补砂浆凝结时间、水下分散性和抗折粘结性能的影响,并通过扫描电镜(SEM)观察了环氧树脂乳液改性砂浆的微观结构。结果表明:随着聚灰比的增大,砂浆凝结时间延长;聚灰比为0.1以内时,硫铝酸盐水泥基修补砂浆的水下抗分散性增强、抗折粘结强度大幅度提高,而继续增大聚灰比,抗折粘结强度反而降低。SEM观察表明,环氧树脂可在水泥水化产物和砂粒表面形成连续的聚合物膜,但环氧树脂乳液掺量过大(聚灰比为0.2)时,形成的聚合物膜过厚,反而降低了砂浆与旧基层的粘结性。  相似文献   

11.
软-硬复配沥青混合料是指以软质沥青和岩沥青作为胶结料所配制的沥青混合料,它可以显著降低沥青混合料的施工温度.采用劈裂强度试验探讨了软-硬复配沥青混合料的强度特征,并对其路用性能进行了验证.结果表明:软-硬复配沥青混合料试件的劈裂强度随养护时间的延长而增大,随岩沥青掺量的增加呈线性增长,随拌和温度及拌和时间的增加而增大;在拌和温度较热拌沥青混合料低30℃的条件下,其强度与各项路用性能与同级配组成的热拌沥青混合料相当,能满足道路使用要求.  相似文献   

12.
由于沥青SMA路面现阶段得到广泛的应用,因此有必要对沥青SMA材料做进一步的研究。针对沥青混合料的路用性能良好的特点,介绍了沥青SMA的概念和沥青混合料的类型,进一步了解沥青混合料组成结构及其强度,以及影响强度的因素,分析了SMA的材料组成、强度形成机理以及性能特点。  相似文献   

13.
时威 《山西建筑》2011,37(35):116-118
通过对三种类型的改性沥青混合料进行高温车辙试验、低温弯曲试验、透水性试验以及抗滑性能试验,分析了外掺剂类型对混合料路用性能产生的影响。结果表明:外掺剂类型不同,混合料的路用性能表现出较大差异;建议在铺筑OGFC路面时,要有针对性的选择外掺剂类型。  相似文献   

14.
石化北路位于华南高温湿热地区,交通量大,重车多,为保证路面行车质量,延长路面寿命,应重点加强其路面的抗车辙性能.本文根据沥青路面车辙的形成机理,分析了影响车辙的沥青、集料、沥青混合料、结构层厚度、外部环境等因素,探讨了车辙的防治措施,并特此成果成功应用于该路路面设计.  相似文献   

15.
陈兴 《城市建筑》2014,(8):380-380
在我国沥青路面快速发展的今天,解决沥青路面和半刚性基层之间的有效粘结问题是当务之急。  相似文献   

16.
王萍 《山西建筑》2007,33(11):223-224
对热沥青混合料的生产工艺、拌合机的工作原理进行了介绍,并从沥青材料、集料的储存、输送与管理,集料、矿粉、沥青供料系统的质量控制,沥青混合料的拌和控制、装料等方面阐述了混合料的质量控制,论述了热料筛分储存系统和计量控制与搅拌系统的操作技巧,以保证沥青混合料的质量。  相似文献   

17.
分析了高速公路沥青路面在原材料质量技术指标、沥青混合料级配及混合料试验技术指标方面存在的不足,介绍了影响沥青路面施工质量的关键工序,阐述了沥青路面的质量检测及质量评定标准,从而提高沥青路面的建设质量。  相似文献   

18.
沈宏辉  潘芳 《山西建筑》2012,(23):121-123
针对硬质沥青富油混合料的性能进行了研究,分别介绍了硬质沥青的性能及硬质沥青富油混合料配合比设计,并通过对比试验来评价富油沥青混合料的各种性能,从而得出了一些指导性结论。  相似文献   

19.
贺春芳  徐美琴  周志华 《山西建筑》2010,36(12):165-166
以旧路改造工程为依托,对高速公路及二级以上的沥青路面再生混合料的性能和配合比的设计进行了深入的试验,大量的试验证明再生混合料的性能与旧料的掺配率、再生剂的掺量及施工工艺有关,提出了再生沥青混合料的利用特点和建议。  相似文献   

20.
赵亚兰  郭红兵  张丽娟 《山西建筑》2005,31(23):159-160
针对低温开裂在沥青路面上普遍存在的现象,对沥青和沥青混合料低温性质进行了研究,提出了改善沥青低温性能的方法,并对沥青和沥青混合料的低温性质进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号