首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng-Yim Chang  Ming-Yen Wey 《Fuel》2010,89(8):1919-1927
SO2 and HCl are major pollutants emitted from waste incineration processes. Both pollutants are difficult to remove completely and can enter the catalytic reactor. In this work, the effects of SO2 and HCl on the performance of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for NO removal were investigated in simulated waste incineration conditions. The characterizations of the catalysts were analyzed by BET, SEM/EDS, XRD, and ESCA. Experimental results indicated the 1%Rh/Al2O3 catalyst was significantly deactivated for NO and CO conversions when SO2 and HCl coexisted in the flue gas. The addition of between 2 and 10 wt.% Na promoted the activity of the 1%Rh/Al2O3 catalyst for NO removal, but decreased the CO oxidation and BET surface area. The catalytic activity for NO removal was inhibited by HCl as a result of the formation of RhCl3. Adding Na to the Rh/Al2O3 catalyst decreased the inhibition of SO2 because of the formation of Na2SO4, which was observed in the XRD and ESCA analyses. SEM mapping/EDS showed that more S was residual on the surface of the Rh-Na/Al2O3 catalyst than Cl.  相似文献   

2.
Carbon-supported catalyst with vanadium(V) sulfate (V2O3(SO4)2) as active component was prepared, characterized and tested for SO2 and NO catalytic removal. Result shows that this catalyst is very active towards SO2 oxidation and selective catalytic reduction of NO with NH3 in the low temperature range of 100–250 °C.  相似文献   

3.
A series of CeO2(ZrO2)/TiO2 monolith catalysts were investigated for catalytic oxidation of Hg0 and NH3-SCR of NO. Effect of flue gases components on catalytic oxidation of Hg0 was mainly studied. Results showed that the CeO2(ZrO2)/TiO2 catalyst exhibited high efficiency for catalytic oxidation of Hg0 at 240–400 °C without adding other oxidant, and its catalytic performance for NH3-SCR of NO was not affected. NH3 had slight inhibitory effect while SO2 and NO had no influence on catalytic oxidation of Hg0, but O2 obviously improved catalytic oxidation of Hg0 for its oxidation susceptibility.  相似文献   

4.
A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5–50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst.  相似文献   

5.
The potential of the sorbent-catalysts prepared from three low cost materials, i.e., the lime, fly ash and some industrial waste material containing iron oxide, have been investigated for simultaneous removal of SO2 and NO x from flue gas in the temperature range 700–850 °C. NH3 was chosen as the reducing agent for NO reduction in this study. Experimental results showed that SO2 and NO could be simultaneously removed efficiently in the absence of O2 at the temperature window of 700–800 °C. The effect of product layer generated from SO2 removal on NO removal was not obvious. NO removal efficiency was strongly inhibited by O2, which was attributed to the partial oxidation of NH3 to NO over the sorbent-catalysts in the presence of oxygen. Neither NO2 nor N2O by-product was detected both in the absence and presence of O2. Three routes were suggested to overcome the negative effect of O2. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

6.
The reduction of nitric oxide with ammonia on iron oxide catalysts has been studied in a continuous-flow recycle reactor using simulated flue gas in the temperature range from 573 to 673 K. NO and HN3 concentrations were varied between 0 and 1000 vpm, O2 and H2O concentrations between 0 and 9 vol.-%, the remainder being nitrogen. In the presence of oxygen, the formulated reaction rate equation describes the measured rates of the main reaction NO + 2/3 NH3 ? 5/6 N2 + H2O. Its form corresponds to the Langmuir-Hinshelwood type. The rate equation well fits the data, which cover the whole industrial temperature and concentration range. In the absence of oxygen, the measured reaction rates can be best described by a power law.  相似文献   

7.
A series of polymeric carbon-coated monoliths oxidized with either concentrated or 2N HNO3, H2O2 or H2SO4 and subsequently loaded with 3 wt.% vanadium were prepared. The influence of the different oxidation treatment conditions on the SCR (selective catalytic reduction) catalytic activity, texture and chemical surface properties were studied. Similar pore distribution and pore volumes were observed for the four oxidized samples, indicating that surface modification of carbon supports has been successfully made without disrupting the original textural structures of activated coated monoliths. The surface chemistry created by the oxidation treatments has two effects on the catalytic activity. One of these is that higher surface acidity results in higher NO reduction up to a certain extent. The highest acidities seem to promote a sufficiently strong NH3 adsorption on the surface such that the lack of efficient desorption decreases the overall NO conversion efficiency. The other effect is that a low surface acidity does not seem to promote vanadium dispersion and fixation, thereby also resulting in decreased NO reduction efficiency.  相似文献   

8.
Iron was introduced by ionic exchange inside the FER structure in order to yield a Fe-FER series with increasing metal loading. Characterization of the Fe2+ cations by adsorption of CO at liquid nitrogen temperature followed by infrared spectroscopy allowed to identify three distinct sites for iron. The most abundant iron species are located on easily accessible sites of the FER structure, whereas high metal loading is required to observe more confined Fe2+ species. According to the CO adsorption results, the main iron species appears to be coordinatively unsaturated whereas isotopic labelling upon NO adsorption indicates that two distinct iron sites almost give rise to the same mononitrosyl infrared signature. Studying the catalyst upon interaction with NO and O2 in operando conditions leads to the observation of these mononitrosyl species who behave as reaction intermediates for the NO oxidation into NO2. All our Fe-FER samples presenting these mononitrosyl complexes are active not only in NO-to-NO2 reaction but also in the NOx selective catalytic reduction with ammonia. The effects of both NH3 and SO2 as adsorption competitor during the low temperature NH3-SCR are also discussed.  相似文献   

9.
NO removal activity and the durability of iron-exchanged mordenite type zeolite catalyst (FeHM) have been examined in a continuous fixed bed flow reactor. The catalytic activity for NO reduction by NH3 in the presence of oxygen was much higher than that in the absence of oxygen, and it was fully reversible with respect to the presence of oxygen in the feed gas stream. The oxidation ability of SCR catalysts including FeHM was critical for both reactions of NH3 and SO2 oxidation, thus for the NO removal activity and its sulfur tolerance. The maximum conversion of NO for FeHM catalyst with respect to the reaction temperature shifted to the higher temperature due to its mild oxidation ability. The deactivation behaviors such as the changes of the physicochemical properties of the catalyst and the loss of NO removal activity induced by SO2 could not be distinguished, regardless of the metals exchanged in zeolite. However, the amount of deactivating agents deposited on the catalyst surface depended on the species of metals exchanged on the mordenite type zeolite, which was mainly attributed to the oxidation ability of metals for SO2 conversion to SO3.  相似文献   

10.
Gas effects on NO reduction by NH3 over sulfated CaO have been investigated in the presence of O2 at 700–850 °C. CO2 and SO2 have reversible negative effects on the catalytic activity of sulfated CaO. Although H2O alone has no obvious effect, it can depress the negative effects of CO2 and SO2. In the flue gas with CO2, SO2 and H2O co-existing, the sulfated CaO still catalyzed the NO reduction by NH3. The in situ DRTFTS of H2O adsorption over sulfated CaO indicated that H2O generated Br?nsted acid sites at high temperature, suggesting that CO2 and SO2 competed for only the molecularly adsorbed NH3 over Lewis acid sites with NO, without influencing the ammonia ions adsorbed over Br?nsted acid sites. Lewis acid sites shifting to Br?nsted acid sites by H2O adsorption at high temperature may explain the depression of the negative effect on NO reduction by CO2 and SO2.  相似文献   

11.
Catalytic conversion of NO and CO over Cu substituted cobalt oxide spinels show excellent activity for CO-O2 and NO-CO reactions. Lower concentration of Cu in cobalt oxide spinel is having an enhancing effect on the catalytic conversion. Best activity among the tested catalyst was found for Co2.9Cu0.1O4 and complete conversion (100%) is observed at 93 °C for CO oxidation by O2 and 209 °C for NO reduction by CO. Prepared catalysts show promising activity compared to few of the precious metal based catalysts reported in the literature. The influence of moisture and oxygen on catalytic conversion has been studied.  相似文献   

12.
This study used different metals to modify Rh/Al2O3 catalysts for NO reduction in a simulated waste incineration flue gas containing 6% O2. The characteristics of the modified catalysts were analyzed using BET, TEM and XRD. The results of the experiment reveal that Na addition can significantly affect the properties of Rh/Al2O3 catalysts on the BET surface area and Rh metal dispersion. Furthermore, Na addition was found to significantly enhance the NO conversion of Rh/Al2O3 at 250–350 °C. On the contrary, Cu, Ni, and Co addition was found to have slight suppression effects.  相似文献   

13.
Two novel catalysts Rh/Al2O3 and Rh–Na/Al2O3 were prepared for NO removal and tested their practical performances in a laboratory-scale waste incineration system. The effects of particulates, heavy metals, and acid gases on the catalysts were evaluated and investigated through several characterization techniques, such as SEM, EA, XRPD, ESCA, and FTIR. The results indicated that the NO conversions were increased with the accumulation of particulates on the surface of catalysts, which was attributed to the increase in carbon content. However, the increase in heavy metals Cd and Pb contents on the surface of catalysts decreased the activity of catalyst for NO removal but did not change the chemical state of Rh and Na. The Rh/Al2O3 catalysts were poisoned when the acid gases SO2 and HCl were present in the flue gas, because Rh and Al reacted with S and Cl to form inactive products. Adding Na to Rh/Al2O3 catalysts produced a promoting effect for SO2 removal due to the formation of Na2SO4. The influence levels of different pollutants on the performances of Rh/Al2O3 and Rh–Na/Al2O3 catalysts for NO removal followed the sequence of HCl > heavy metals > SO2 > particles.  相似文献   

14.
Copper catalysts supported on acid treated activated carbon (AC) were prepared, characterized and tested in terms of their SO2 oxidation activity. Reactions of CuO-AC in flow systems with sulfur dioxide, oxygen and nitrogen streams were investigated to determine the types of chemical interactions that occur on the sorbent surface. The effects of reaction temperature, acid treatment, metal loading, support particle size, SO2 concentration and O2 concentration on SO2 oxidation activity were evaluated. It was found that carbon materials used as catalyst supports for copper oxide catalysts provided a high catalytic activity for adsorbing SO2 from flue gas and oxidizing it. Acid pretreatment of the carbon supports increased the content of specific surface chemical groups to enhance the catalytic activity for SO2 oxidation. Metal loading, as well as support particle size, have a significant influence on the SO2 activity. The supported metals rather than surface oxygen functional groups on AC may be the active sites for adsorbing SO2.  相似文献   

15.
CuCl2-SCR catalysts prepared by an improved impregnation method were studied to evaluate the catalytic performance for gaseous elemental mercury (Hg0) oxidation in simulated flue gas. Hg0 oxidation activity of commercial SCR catalyst was significantly improved by the introduction of CuCl2. Nitrogen adsorption, XRD, XRF and XPS were used to characterize the catalysts. The results indicated that CuCl2 was well loaded and highly dispersed on the catalyst surface, and that CuCl2 played an important role for Hg0 catalytic oxidation. The effects of individual flue gas components on Hg0 oxidation were also investigated over CuCl2-SCR catalyst at 350 oC. The co-presence of NO and NH3 remarkably inhibited Hg0 oxidation, while this inhibiting effect was gradually scavenged with the decrease of GHSV. Further study revealed the possibility of simultaneous removal of Hg0 and NO over CuCl2-SCR catalyst in simulated flue gas. The mechanism of Hg0 oxidation was also investigated.  相似文献   

16.
Nanosized CeO2 was synthesized by sol–gel method and used as the support to prepare six kinds of supported metal oxide catalysts by incipient wetness impregnation method. These catalysts were investigated for the catalytic reduction of SO2 to elemental sulfur with CO as a reducing agent. Experimental results indicate that Cr2O3/nano-CeO2 was the most active catalyst. Using this catalyst, a kinetic study was performed on the reduction of SO2 and the optimal feed ratio of CO/SO2 was found to be 2.5/1, and low concentrations of SO2 and CO provide a high SO2 conversion and sulfur yield. We also found that the catalyst presulfided by CO + SO2 exhibits a higher performance than those pretreated with CO, SO2 or He. The discrepancy in the stability and activity resulted in the pretreatment has been rationally explained. The temperature-programmed desorption patterns of SO2 and CO illustrate that Cr2O3/nano-CeO2 can adsorb and desorb SO2 and CO more easily than can other catalysts. These results may properly explain why Cr2O3/nano-CeO2 has a higher activity for the reduction of SO2.  相似文献   

17.
Feng-Yim Chang  Ming-Yen Wey 《Fuel》2009,88(9):1563-1571
This study investigated the activity of Rh/Al2O3 and Rh-Na/Al2O3 catalysts for polycyclic aromatic hydrocarbons (PAHs) removal and the influence of particulates, heavy metals, and acid gases (SO2 and HCl) on the performance of catalysts. The experiments were carried out in a laboratory-scale waste incineration system. Experimental results show that the destruction removal efficiency (DRE) of PAHs by Rh/Al2O3 and Rh-Na/Al2O3 catalysts were 80% and 59%, respectively when the flue gas did not contain any pollutants. The concentrations of PAHs increased by using a Rh/Al2O3 catalyst when the flue gas contained Cd, Pb, and SO2 and also increased by using a Rh-Na/Al2O3 catalyst when the flue gas contained particulates, Cd, and HCl. Adding Na to the Rh/Al2O3 catalyst can inhibit the increases of 3-4 ring PAHs when the flue gas contained Pb. The influence of acid gases on the performance of the Rh/Al2O3 and Rh-Na/Al2O3 catalysts followed the sequence SO2 > HCl > SO2 + HCl. The activity of the catalysts for PAHs removal was significantly suppressed by increased concentrations in particulates and Cd, yet promoted by a high Pb concentration. The results of ESCA analysis indicated that the presence of Cd and Pb did not change the chemical states of Rh and Na, but the presence of SO2 and HCl did.  相似文献   

18.
As an attempt to improve the catalytic activity at higher reaction temperatures between 300-450°C, various mole ratios of WO3 were added to V2O5/TiO2 catalytic systems. And also, in order to suggest a new mixed oxide catalyst system for simultaneous removal of NOx and SOx, from stationary sources, MoO3-V2O5/TiO2catalysts were prepared by a conventional impregnation method together with a newly introduced method of surface fixation (non-aqueous solution method). In case of WO3 addition, at higher reaction temperature range (300–450°C), WO3 and WO3-V2O5/TiO2 catalysts showed significant high conversion in NO reduction with NH3 while V2O5/TiO2 catalyst showed a significant change in selectivity mainly due to the excess side reaction of NH3 oxidation. This difference in selectivity due to NH3 oxidation at high temperature is supposed to be associated with the difference in values of surface excess oxygen between WO3 and V2O5 on titania. The surface acidities of tested catalysts were relatively well correlated with the % conversion of NO at 400°C. In case of MoO3 addition, the catalytic activity for the simultaneous removal of NOx and SOx were quite enhanced by the addition of MoO3 into V2O5/TiO2 catalysts. The enhanced activities were responsible for the formation of Mo=O bond on the intermediate species produced by solid solutions on MoO3-V2O5/TiO2 (aqueous). However, in the case of MoO3-V2O5/TiO2 (non-aqueous), the exact source of active site was not able to detect in IR spectra in spite of more enhanced activity was obtained in this study. After SO2 contact, VOSO4 is newly formed on the surface of catalyst, which supposed to be associated with the activity enhancement.  相似文献   

19.
J. Zawadzki  M. Wi?niewski 《Carbon》2003,41(12):2257-2267
The adsorption and oxidation of ammonia over carbons differing in the chemical structure of surface functional groups have been investigated by FTIR spectroscopy. The reactions of NH3 with carbons have been studied both in the presence and in the absence of oxygen. As a result of NH3 chemisorption, in addition to ammonium salts, there are formed surface amide and imide structures. At the higher temperature surface isocyanate species are formed. Thermal stabilities of surface structures, formed as a result of NH3 chemisorption have been determined by means of FTIR spectroscopy. The activity and selectivity of carbons for the selective catalytic oxidation (SCO) of NH3 to N2 with excess O2 has been shown by microreactor studies at 295-623 K. Carbon catalysts are very active for NH3 oxidation. Nitrogen is generally the predominant product of ammonia oxidation. The selectivity to N2, N2O and NO is determined by the surface oxygen coverage and reaction temperature. The data obtained indicate that the N2 is formed via selective catalytic reduction (SCR) between NHx surface species and NO formed from NH4+ oxidation. This implies that ammonia is activated in the form of NH4+ species for both SCR and SCO processes.  相似文献   

20.
The effect of cobalt precursors such as cobalt acetate and cobalt nitrate on NO oxidation was examined over cobalt oxides supported on various supports such as SiO2, ZrO2, and CeO2. The N2 physisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction with H2 (H2-TPR), NO chemisorptions, and temperature-programmed oxidation (TPO) with mass spectroscopy were conducted to characterize catalysts. The NO uptake as well as the catalytic activity for NO oxidation was dependent on the kinds of cobalt precursors and supports for supported cobalt oxides catalysts. Among tested catalysts, Co3O4/CeO2 prepared from cobalt acetate showed the highest catalytic activity. The catalytic activity generally increased with the amount of chemisorbed NO. Reversible deactivation was observed over Co3O4/CeO2 in the presence of H2O. On the other hand, irreversible deactivation occurred over the same catalyst even in the presence of 5 ppm SO2 in a feed. The strongly adsorbed SO2 can prohibit NO from adsorbing on the active sites and also can prevent formed NO2 from desorbing off the catalyst surface. The formation of SO3 cannot be observed from the chemisorbed SO2 on Co3O4/CeO2 during TPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号