首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microporous–mesoporous carbons were synthesized via colloidal silica templating using Kraft lignin as a carbon precursor, which is a waste byproduct from paper industry. A unique feature of these carbons are uniform spherical mesopores achieved after dissolving colloidal silica used as a hard template, while micropores were created by post-synthesis CO2 activation. The resulting activated lignin-based carbons possessed high specific surface area (up to 2000 m2/g) and microporosity and mesoporosity easily tunable by adjusting activation conditions and optimizing the amount and particle size of the colloidal silica used. The total pore volumes of activated carbons obtained by using 20 and 13 nm silica colloids as a hard template exceeded 1 and 2 cm3/g, respectively.  相似文献   

2.
Sangjin Han 《Carbon》2003,41(5):1049-1056
We have synthesized two kinds of mesoporous carbons using a spherical silica sol (SMC1 carbon) and an elongated silica sol (SMC3 carbon) as templates. Nitrogen isotherms and electrochemical experiments were performed to investigate the effect of the silica template structure on the pore structure of the resulting mesoporous carbons. When carbons produced using the same silica to resorcinol molar ratio were compared, both nitrogen isotherms and electrochemical studies revealed that the SMC3 carbons exhibit simpler pore connectivity than SMC1 carbons.  相似文献   

3.
In this work, nitrogen-doped mesoporous carbon spheres (NMCS) were synthesized through a hard template method by using benzoxazine resin as precursor and ordered mesoporous silica spheres as template. The obtained N-doped mesoporous carbons were amorphous spherical nanoparticles with worm-like mesoporous channels and possessed high surface area of 789 m2/g, large pore volume of 0.49 cm3/g and high nitrogen content of 3.50 wt.%. The adsorption capacity of methyl orange (MO) by NMCS could attain 352.1 mg/g at an optimal condition, while the adsorption capacity of MO by non-doped mesoporous carbon spheres (MCS) was 251.9 mg/g at the same condition. The adsorption process fitted the pseudo-second-order kinetic model and the Langmuir isotherm well. Thermodynamic analysis indicated that the removal of MO by NMCS was spontaneous, endothermic and feasible process. In addition, the adsorption capacity of regenerated adsorbent was 89.04% of the initial level after four regeneration cycles.  相似文献   

4.
In this paper the fabrication and characterization of graphitizable and graphitized porous carbons with a well-developed mesoporosity is described. The synthetic route used to prepare the graphitizable carbons was: (a) the infiltration of the porosity of mesoporous silica with a solution containing the carbon precursor (i.e. poly-vinyl chloride, PVC), (b) the carbonisation of the silica–PVC composite and (c) the removal of the silica skeletal. Carbons obtained in this way have a certain graphitic order and a good electrical conductivity (0.3 S cm−1), which is two orders larger than that of a non-graphitizable carbon. In addition, these materials have a high BET surface area (>900 m2 g−1), a large pore volume (>1 cm3 g−1) and a bimodal porosity made up of mesopores. The pore structure of these carbons can be tailored as a function of the type of silica selected as template. Thus, whereas a graphitizable carbon with a well-ordered porosity is obtained from SBA-15 silica, a carbon with a wormhole pore structure results when MSU-1 silica is used as template. The heat treatment of a graphitizable carbon at a high temperature (2300 °C) allows it to be converted into a graphitized porous carbon with a relatively high BET surface area (260 m2 g−1) and a porosity made up of mesopores in the 2–15 nm range.  相似文献   

5.
中孔炭材料的制备及吸附性能的研究   总被引:5,自引:0,他引:5  
以正硅酸乙酯为模板硅源,酚醛树脂为炭前驱体,运用模板法制备了中孔炭材料。并用红外光谱(FT—IR)、扫描电镜(SEM)、低温N2自动吸附、甲醛和VB12饱和吸附等对样品形貌、孔结构和吸附性能进行了研究。结果表明:制备的炭材料孔径集中分布在2-7nm左右,且中孔孔隙率达到74.6%,比表面积达到1012m^2/g;材料对VB12大分子有较好的吸附性能。表明通过控制正硅酸乙酯的水解条件能制备孔径集中的中孔炭材料。  相似文献   

6.
Mesoporous carbons were prepared using commercial silica particles and a formaldehyde–resorcinol resin as a template and carbon precursor, respectively. By changing the molar ratio of template to carbon precursor, mesoporous carbons with different mesoporosities (MC-X, X represents the molar ratio of template to carbon precursor) were produced. The resulting MCs had a high-surface area and large pore volume. In particular, the highest mesoporosity was observed for MC-3. Pt catalysts-supported on MC-X were prepared using formaldehyde as a reducing agent for use as a cathode catalyst in a polymer electrolyte fuel cell (PEMFC). The size of Pt crystallite was dependent on the properties of corresponding carbon support. As a whole, a carbon support with a high-surface area and high-mesoporosity served the best in terms of a high-dispersion of Pt nanoparticles. In a unit cell test of the PEMFC, a Pt catalyst with a high-mesoporosity and fine dispersion of metal showed an enhanced performance. The findings indicate that the surface area combined with the mesoporosity had a positive influence on the metal dispersion and the distribution of ionomer, leading to the enhanced cell performance.  相似文献   

7.
An-Hui Lu  Wen-Cui Li  Wolfgang Kiefer 《Carbon》2004,42(14):2939-2948
Ordered mesoporous carbon with hexagonal arrays of tubes (CMK-5) was successfully synthesized via a nanocasting process by directly using SBA-15, instead of AlSBA-15, as a template, furfuryl alcohol as a carbon source and oxalic acid as the catalyst. The time consuming impregnation of SBA-15 with aluminum could be saved. The as-synthesized CMK-5 exhibits a tubular structure with double pore system. The loading amount of carbon precursor on the pore walls of SBA-15 is the key factor for the formation of the CMK-5 structure with two-dimensional hexagonal arrays of tubes, and the pore diameter can be adjusted by varying the loading amount of the carbon precursor. The CMK-5 carbon exhibits high apparent surface area up to ∼2500 m2/g and high pore volume reaching ∼2 cm3/g, which is due to the unique structure of CMK-5. The characterization results confirmed that carbonization under argon atmosphere instead of vacuum is sufficient for the structural formation of CMK-5 carbons, and can be used as an alternative pathway to prepare tubular-type carbons.  相似文献   

8.
The particle size effect of N-doped mesoporous carbon was investigated for ORR activity in acid condition and for issue of a mass transfer and gas diffusion in PEMFCs. As for a non-Pt ORR catalyst, nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a various particle sizes with the range of the average 20, 45 and 75 μm were synthesized by the precursor of polyaniline for the N/C species, and a mesoporous silica template was used for the physical structure for preparation of nitrogen doped OMCs. The N-doped mesoporous carbons are promoted by a transition metal (Fe) to improve catalytic activity for ORR in PEMFCs. All the prepared carbons were characterized by via scanning electron microscopy (SEM), and to evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The surface area and pore volume were increased as the particles decreased, which was effective for the mass transfer of the reactant for higher activity at the limiting current regions.  相似文献   

9.
A series of hierarchically porous carbons was synthesized by self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate (TEOS) and colloidal silica under acidic conditions. Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer was employed as a soft template, and TEOS-generated silica and colloidal silica were used as hard templates. The carbon precursors were polymerized in hydrophilic domains of block copolymer, followed by carbonization and silica dissolution. This resulted in carbons possessing cylindrical (∼12 nm) and spherical (20 or 50 nm) mesopores created by thermal decomposition of the soft template and by the dissolution of colloidal silica, respectively; fine pores were also formed by the dissolution of the TEOS-generated silica (∼2 nm). A further increase in fine porosity was achieved by post-synthesis activation of the carbons with carbon dioxide and/or water vapor, which resulted in hierarchical carbons with a surface area and pore volume approaching 2800 m2/g and 6.0 cm3/g, respectively.  相似文献   

10.
Hsin-Yu Liu 《Carbon》2005,43(3):559-566
Mesoporous carbon was prepared from resol-type phenol-formaldehyde resin using mesoporous silica as template. By filling the resin into the pores of the template, followed by resin carbonization and template dissolution, mesoporous carbon preparation can be significantly simplified. Small-angle X-ray diffraction reflected the long-range ordering of the pores in the carbon. TEM and N2-adsorption analysis showed that the carbon contained mesopores of different sizes and a high proportion of micropores. Electrochemical cyclic voltammetry was conducted in H2SO4 to examine the surface accessibility of the carbon for double layer formation. Microporous activated carbon, also from the resol resin, was prepared for comparison. Although the pore sizes are different, the double-layer capacitances per unit area for both carbons are similar at low potential sweep rates. However, the capacitance decline with the sweep rate was less significant for the mesoporous carbon. Upon gasification of the carbons to increase their surface area, the ultimate capacitance per unit carbon area was enhanced and the enhancement was slightly larger for the mesoporous carbon. It is suggested that the presence of mesopores has facilitated the electrolyte migration into carbon interior. A two-electrode capacitor assembled with the mesoporous carbon was shown to have a small resistance and still exhibited a capacitive behavior at high potential sweep rates.  相似文献   

11.
Nitrogen-containing mesoporous carbons with the use of colloidal silica spheres of (14 nm) and chitosan as a carbon precursor were obtained. A removal of such small template particles from carbonized silica–chitosan composite is difficult and HF with a minimum concentration of 15 wt% should be used. By varying the silica-to-chitosan ratio, the porous characteristic of products is controlled. The modification by ZnCl2 with a molar Zn-to-C (in chitosan mass) ratio of ‘6’ results in the development of microporosity; however it is accompanied by a significant reduction of mesopore volume (Vmes). The addition of ZnCl2 in a ratio of ‘5.25’ and pH adjustment to 5.8 increase the volumes of micropores, small mesopores, BET surface area to 1975 m2/g, and preserve Vmes of 4.15 cm3/g. The novelty of the presented strategy is the creation of microporosity in the hard-templated materials by incorporating ZnCl2 into the mixture of Ludox HS-40 template and chitosan precursor, as well as the investigation on how the pH of synthesis influences the final porosity. The pH of a silica–chitosan–zinc solution, equal to 3.9, provides some coordination of Zn2+ by –OH and –NH2 groups, whereas pH adjustment to 5.8 results in the precipitation of a new template—Zn(OH)2.  相似文献   

12.
A method for preparing porous graphitic carbon in the presence of an Fe salt using sucrose and mesoporous silica (SBA-15) as a carbon precursor and a removable template, respectively, is described. Hydrothermal treatment was essential for the development of a graphitic structure in the final carbon. Characterization of the porous graphitic carbon indicated a high surface area (490 m2/g) and large pore volume (0.5 cm3/g).  相似文献   

13.
Hierarchical micro–mesoporous carbons with high porosity development and ordered structure were prepared. The innovative proposal consists in developing microporosity in ordered mesoporous carbon by chemical activation in template presence in order to minimize the structural damage. Thus, we have directly carried out the chemical activation of a mesoporous carbon/silica composite with KOH. The effect on mesoporous ordered structure of both KOH/carbon ratio and activation temperature has been studied. Following chemical activation the specific surface area is increased from 341 to 1757 m2/g and the micropore volume becomes almost six times larger than initial value. Although a slight widening of the mesopore distribution and an increase in the mesopore volume has been observed during activation, TEM and XRD results reveal an excellent conservation of the ordered mesoporous structure during activation even at conditions well above the limits that a CMK-3 type carbon can resist.  相似文献   

14.
Ordered mesoporous carbon is synthesized by the organic–organic self-assembly method with novolac as carbon precursor and two kinds of triblock copolymers (Pluronic F127 and P123) as template. The hexagonal structure and a worm-hole structure are observed by TEM. The carbonization temperature is determined by TG and FT-IR. Characterization of physical properties of mesoporous carbon is executed by N2 absorption–desorption isotherms and XRD. The mass ratios of carbon precursor/template affect the textural properties of mesoporous carbon. The mesoporous carbon with F127/PF of 1/1 has lager surface area (670 m2 g?1), pore size (3.2 nm), pore volume (0.40 cm3 g?1), smaller microporous surface area (368 m2 g?1) and wall thickness (3.7 nm) compare to that with F127/PF of 0.5/1 (576 m2 g?1, 2.7 nm, 0.29 cm3 g?1, 409 m2 g?1 and 4.3 nm, respectively). The mesoporous carbon prepared by carbonization at high temperature (700 °C) exhibits lager surface area, lower pore size and pore volume than the corresponding one obtained at 500 °C. The structure and order of the resulting materials are notably affected with types of templates. The mesoporous carbon with P123 as template exhibits worm-hole structure compare to that with F127 as template with hexagonal structure. In general, the pore size of mesoporous carbon with novolac as precursor is smaller than that with resorcinol–formaldehyde as precursor.  相似文献   

15.
Jinwoo Lee  Yosun Hwang  Hyun Min Park 《Carbon》2005,43(12):2536-2543
Magnetically separable ordered mesoporous carbon containing magnetic nanoparticles embedded in the carbon walls was synthesized using a simple synthetic procedure. The resulting magnetically separable mesoporous carbon was denoted as M-OMC (magnetically separable ordered mesoporous carbon) poly(pyrrole) with residual Fe2+ ions in the mesoporous channel was converted to carbon material containing superparamagnetic nanoparticles. The size of the magnetic nanoparticles obtained was restricted by the channel size of the SBA-15 silica template, which resulted in the generation of superparamagnetic nanoparticles embedded in the carbon rods. The blocking temperature of M-OMC is 110 K. Pore size and textural property of M-OMC is similar to that of hexagonally ordered mesoporous carbon fabricated using SBA-15 silica as a template. The saturation magnetization of M-OMC is ca. 30.0 emu/g at 300 K, high enough for magnetic separation.  相似文献   

16.
Three-dimensional cubic ordered mesoporous carbons with tunable pore sizes have been synthesized by using cubic Ia3d mesoporous KIT-6 silica as the hard template and boric acid as the pore expanding agent. The prepared ordered mesoporous carbons were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption analysis. The results show that the pore sizes of the prepared ordered mesoporous carbons with three-dimensional cubic structure can be regulated in the range of 3.9–9.4 nm. A simplified model was proposed to analyze the tailored pore sizes of the prepared ordered mesoporous carbons on the basis of the structural parameters of the silica template.  相似文献   

17.
In order to optimize the performance of supercapacitors, the capacitance of the carbon materials used as electrodes was strictly related to their pores size and also to their redox properties. Well-sized carbons have been elaborated through a template technique using mesoporous silica. For a series of template carbons, a perfect linear dependence has been found for the capacitance values versus the micropore volume determined by CO2 adsorption. The redox properties of carbons were enhanced by substituting nitrogen for carbon up to ca. 7 wt.%. For carbons with similar nanotextural characteristics, the electrochemical measurements showed a proportional increase of the specific capacitance with the nitrogen content in acidic electrolyte. For an activated carbon from polyacrylonitrile with a specific surface area of only 800 m2 g−1, but with a nitrogen content of 7 wt.%, the capacitance reaches 160 F g−1, with very little fading during cycling.  相似文献   

18.
A series of mesoporous carbons with high loading of silica has been synthesized by acid-catalyzed polymerization of resorcinol and formaldehyde in the presence of tetraethyl orthosilicate (TEOS), colloidal silica (silica source) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (soft template) followed by carbonization. This synthesis route can be considered as a combination of soft-templating and hard templating strategies. The resulting mesoporous silica-carbon composites contained spherical silica colloids in addition to uniformly distributed silica originated from TEOS. Dissolution of silica led to high surface area carbons, which in addition to the primary mesopores formed by thermal degradation of block copolymer template possessed spherical mesopores after dissolution of silica colloids and fine pores after removal of TEOS-generated silica species. This approach can be used to incorporate other inorganic nanoparticles into mesoporous carbons with extra microporosity created after dissolving TEOS-generated silica species.  相似文献   

19.
High-surface-area activated micro/mesoporous carbons (SBET ? 700–1900 m2/g) were obtained by a simple synthesis method, consisting in the ZnCl2-catalyzed polymerization of furfuryl alcohol followed by the polymer pyrolysis. The ZnCl2 salt, whose quantity exceeds that necessary for the polymerization reaction, acts both as template and as activating agent during the thermal treatment. Depending on the precursor quantities, carbons with prevailing micro- or meso-porous nature were obtained. The peculiar porosities make these materials suitable for testing the adsorption of molecules of different size (methylene blue and Cy-5 cyanine), which can constitute an easy method to qualitatively identify the micro/mesoporous nature of carbon materials.  相似文献   

20.
Marta Sevilla 《Carbon》2006,44(3):468-474
Graphitic porous carbons with a wide variety of textural properties were obtained by using a silica xerogel as template and a phenolic resin as carbon precursor. The synthetic procedure used to prepare them was as follows: (a) infiltration of the porosity of silica by a solution containing phenolic resin, (b) carbonization of the silica-resin composite, (c) removal of the silica skeleton, (d) impregnation of the templated porous carbon with a metallic salt and (e) catalytic graphitization of the impregnated carbon by heat treatment at 900 °C. The graphitization of the carbons thus prepared varies as a function of the carbonization temperature used and the type of metal employed as catalyst (Fe, Ni or Mn). The porous characteristics of these materials change greatly with the temperatures used during the carbonization step. These graphitized carbons exhibit high electrical conductivities up to two orders larger than those obtained for the non-graphitized samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号