首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbon》2004,42(12-13):2375-2383
N2 adsorption isotherms at 77 K of single-wall carbon nanotubes (SWNTs), multi-wall carbon nanotubes (MWNTs), and mixtures of these carbon nanotubes (CNTs) were analyzed for differences in their pore size distributions (PSDs). The PSDs, calculated in the microporous region by the Horvath–Kawazoe method and in the mesoporous region by the BJH method, are in agreement with the structures of both types of CNTs deduced from high-resolution transmission electron microscopy. A characteristic peak in the microporous region in the PSD of SWNTs is not present in the PSDs of MWNTs and impurities such as amorphous carbon, metal residues of catalysts, etc. The evaluation of this peak is proposed as a convenient tool for the quantitative characterization of SWNT purity in carbon nanotube-containing samples.  相似文献   

2.
Yuanzhen Chen 《Carbon》2010,48(3):714-720
In recent years, large fluctuations have been reported for measurements of the hydrogen storage of carbon materials using a Sieverts apparatus. To investigate this problem, helium gas adsorption was selected for comparison with the adsorption of hydrogen, and the results show that hydrogen but not helium was adsorbed onto the wall of the sample cell at ambient temperature. The adsorption capacity of the sample cell at 77 K is higher than that at ambient temperature. A series of adsorption tests was conducted with a LaNi5 alloy to prove the influence of the physisorption, and the results show that an increase in the hydrogen storage capacity was resulted in when sample loading decreases. After correction for this hydrogen physisorption, the capacity was restricted between 1.38 and 1.41 wt.%. Multi-walled carbon nanotubes (MWCNTs), activated carbon (AC), single-walled carbon nanotubes (SWCNTs), graphite nanofibers (GNFs), and graphite oxide (GO) were also measured and corrected through this method.  相似文献   

3.
An optimised isolation procedure of single-wall carbon nanotubes (SWNTs) from a SWNT soot without using any surfactant is reported. Amorphous carbon and small graphitic particles were washed away with N-methyl-2-pyrrolidone (NMP) and acetone. A large amount of graphite-coated metal particles were removed with the oxidation of the SWNT material with HNO3 (6.5 and 4 M) and by washing the oxidised SWNT material with a mixture of methanol (MeOH) and deionised water. The isolated material was investigated with transmission electron microscopy (TEM) and Raman scattering (647.1 and 532 nm). An elemental analysis of the content of Co and Ni in the SWNT samples isolated at different steps of the isolation procedure was performed. On the basis of the TEM images and elemental analysis it was estimated that the purified material contains more than 75 wt.% of SWNTs.  相似文献   

4.
A systematic study of the reinforcement of single‐walled carbon nanotubes (SWNTs), multiwalled carbon nanotubes, and vapor‐grown carbon nanofibers (VGCNFs) in poly(methyl methacrylate) (PMMA) is reported. SWNT/PMMA composite films with various SWNT concentrations (from 0.5 to 50 wt % with respect to the weight of PMMA) were processed from nitromethane. Two types of SWNTs were used: SWNT‐A, which contained 35 wt % metal catalyst, and SWNT‐B, which contained about 2.4 wt % metal catalyst. Properties of different nanotubes containing composites were compared with 15 wt % carbon nanotubes (CNTs). Property enhancement included electrical conductivity, mechanical properties, and solvent resistance. The thermal degradation of PMMA in the presence of CNTs in air and nitrogen environments was studied. No variation in the thermal degradation behavior of PMMA/CNT was observed in nitrogen. The peak degradation temperature increased for the composites in air at low CNT loadings. Dynamic and thermomechanical properties were also studied. At a 35 wt % SWNT loading, a composite film exhibited good mechanical and electrical properties, good chemical resistance, and a very low coefficient of thermal expansion. Property improvements were rationalized in terms of the nanotube surface area. Composite films were also characterized with Raman spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Single-wall carbon nanotubes (SWNTs) with large diameters from 2 to 5.6 nm were prepared by pulsed laser vaporization of carbon rods doped with Co, Ni and FeS in an atmosphere of Ar:H2. The SWNT material was characterized by SEM, HRTEM, Raman, IR, UV-VIS-NIR absorption spectroscopy and thermogravimetric analysis.  相似文献   

6.
The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material, modified by this deuterium interaction, were performed by means of a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results disclose characteristic features in the TDMS spectra of deuterium evolved from the SWNT material, which can be correlated to the microstructure of nanocarbon material modified by D-treatment. The TDMS spectra of deuterium originating from the large diameter rope type nanotube structures, resulting from a prolonged low-pressure (D + D2) gas mixture treatment, exhibit three overlapping desorption peaks: a dominant one with a desorption activation energy (Edes) of approx. 2.86 eV and lower intensity peaks at Edes of ∼1.50 and 2.46 eV. On the other hand, the TDMS spectra of deuterium taken from the “coral reef”-like carbon nanostructures, obtained after prolonged treatment of SWNTs to a high-pressure (D + D2) gas mixture produced at high temperature, reveal the coexistence of four superimposed desorption peaks with Edes ranging from 1.23 to 4.4 eV. A dominant desorption peak with Edes ≈ 4.4 eV, can be attributed to bulk diffusion of D trapped within this nanocapsule bulk structure.  相似文献   

7.
The complete removal of entrapped metallic impurities (i.e. Ni and Co) incorporated within single wall carbon nanotubes (SWNTs) has been a long-standing issue. A sonication-mediated treatment of as-obtained SWNT soot in a 1:1 mixture of aqueous hydrofluoric and nitric acids resulted in the complete elimination of these impurities as shown by energy dispersive X-ray analysis (EDAX). Contact angle measurements indicated that the wetting of SWNTs is enhanced in the presence of HF. The presence of HNO3 and surfactant was found essential in removing the catalyst due to SWNT etching of end-caps/defects and providing better dispersion, respectively. Moreover, Raman spectroscopy indicated that the structural purity of the SWNTs is not compromised by the HF/HNO3 purification treatment.  相似文献   

8.
Si3N4 nanocomposites reinforced with 1-, 2-, and 6-vol% single-walled carbon nanotubes (SWNTs) were processed using spark plasma sintering (SPS) in order to control the thermal and electrical properties of the ceramic. Only 2-vol% SWNTs additions were used to decrease the room temperature thermal conductivity by 62% over the monolith and 6-vol% SWNTs was used to transform the insulating ceramic into a metallic electrical conductor (92 S m−1). We found that densification of the nanocomposites was inhibited with increasing SWNT concentration however, the phase transformation from α- to β-Si3N4 was not. After SPS, we found evidence of SWNT survival in addition to sintering induced defects detected by monitoring SWNT peak intensity ratios using Raman spectroscopy. Our results show that SWNTs can be used to effectively increase electrical conductivity and lower thermal conductivity of Si3N4 due to electrical transport enhancement and thermal scattering of phonons by SWNTs using SPS.  相似文献   

9.
A method is introduced to isolate and measure the electrical transport properties of individual single-walled carbon nanotubes (SWNTs) aligned on an ST-cut quartz, from room temperature down to 2 K. The diameter and chirality of the measured SWNTs are accurately defined from Raman spectroscopy and atomic force microscopy (AFM). A significant up-shift in the G-band of the resonance Raman spectra of the SWNTs is observed, which increases with increasing SWNTs diameter, and indicates a strong interaction with the quartz substrate. A semiconducting SWNT, with diameter 0.84 nm, shows Tomonaga-Luttinger liquid and Coulomb blockade behaviors at low temperatures. Another semiconducting SWNT, with a thinner diameter of 0.68 nm, exhibits a transition from the semiconducting state to an insulating state at low temperatures. These results elucidate some of the electrical properties of SWNTs in this unique configuration and help pave the way towards prospective device applications.  相似文献   

10.
Guo-Jian Wang  Yao Wang  Lin Liu  Jun Qiu  Yan Li 《Polymer》2007,48(3):728-733
Water-soluble single-walled carbon nanotubes (SWNTs) were synthesized by grafting poly(acrylamide) (PAM) from the surface of SWNT via reversible addition-fragmentation chain transfer (RAFT) polymerization. The RAFT agents were covalently attached to the SWNTs by functionalizing SWNTs with in situ generated diazonium compounds. The product was characterized by means of FT-IR, Raman, 1H NMR, TGA and TEM. The results showed that PAM chains had successfully grafted from SWNT by RAFT polymerization. The amount of PAM grown from SWNT increased with the polymerization time. The acrylamide conversion increased linearly with the polymerization time, indicating the “living” characteristics of the RAFT polymerization. TEM was utilized to image PAM-g-SWNT, showing relatively uniform polymer coatings present on the surface of individual, debundled nanotubes.  相似文献   

11.
A Gorbunov  O JostW Pompe  A Graff 《Carbon》2002,40(1):113-118
Reasons are presented which suggest that the liquefaction of the catalytic particles is a decisive condition for formation of single wall carbon nanotubes (SWNTs) by physical synthesis techniques. It is argued that the SWNT growth mechanism is a kind of solid-liquid-solid graphitization of amorphous carbon or other imperfect carbon forms catalyzed by molten supersaturated carbon-metal nanoparticles. The assumption of low temperature melting of these nanoparticles in contact with amorphous carbon followed by its precipitation in the form of SWNTs allows to explain qualitatively the experimentally observed SWNT growth rates and temperature dependence of the SWNT yield. Guidelines for increasing SWNT yield are proposed.  相似文献   

12.
The effects of the dispersion and concentration of single walled carbon nanotube (SWNT) on the flammability of polymer/SWNT nanocomposites were investigated. The polymer matrix was poly (methyl methacrylate) (PMMA) and the SWNT were dispersed using a phase separation (‘coagulation’) method. Dispersion of SWNTs in these nanocomposites was characterized by optical microscopy on a micrometer scale. Flammability properties were measured with a cone calorimeter in air and a gasification device in a nitrogen atmosphere. In the case where the nanotubes were relatively well-dispersed, a nanotube containing network structured layer was formed without any major cracks or openings during the burning tests and covered the entire sample surface of the nanocomposite. However, nanocomposites having a poor nanotube dispersion or a low concentration of the nanotubes (0.2% by mass or less) formed numerous black discrete islands with vigorous bubbling occurring between these islands. Importantly, the peak heat release rate of the nanocomposite that formed the network layer is about a half of those, which formed the discrete islands. It is proposed that the formation of the discrete islands is due to localized accumulation of the nanotubes as a result of fluid convection accompanying bubble formation and rise of the bubbles to the surface through the molten sample layer and bursting of the bubbles at the surface. The network layer acts as a heat shield to slow the thermal degradation of PMMA.  相似文献   

13.
Dynamically vulcanized thermoplastic elastomer based on Nitrile butadiene-rubber (NBR)/PVC with functionalized single-walled carbon nanotubes (f-SWNTs) and non-functionalized single-walled carbon nanotubes (SWNTs) were prepared using a brabender internal mixer. Effects of two types of SWNTs (functionalized and non-functionalized) on morphology and mechanical properties of NBR/PVC blends were studied. Results showed that the mechanical properties of NBR/PVC/SWNTs nanocomposites improved with the increasing of SWNTs content and in particular with the increase of f-SWNTs content. Moreover, the enhancement of mechanical properties of NBR/PVC blends reinforced with functionalized SWNT was higher than that of NBR/PVC blends with non-functionalized SWNT. Dispersion of SWNTs and morphology of NBR/PVC/SWNT nanocomposites were determined by scanning electron microscopy and transmission electron microscopy (TEM) techniques. TEM images illustrated that f-SWNTs were dispersed uniformly in NBR/PVC matrix while non-functionalized SWNTs showed much aggregation. Dynamic mechanical thermal analysis of NBR/PVC/SWNTs nanocomposites was also studied. The outcomes indicated that in the case of f-SWNTs, the intensity of tan ?? peak was lower than that in the case of non-functionalized SWNTs. Meanwhile, the intensity of tan ?? peak reduced when the content of f-SWNTs was increased.  相似文献   

14.
Hydrogen adsorption in different carbon nanostructures   总被引:1,自引:0,他引:1  
Hydrogen adsorption in different carbonaceous materials with optimized structure was investigated at room temperature and 77 K. Activated carbon, amorphous carbon nanotubes, SWCNTs and porous carbon samples all show the same adsorption properties. The fast kinetics and complete reversibility of the process indicate that the interaction between hydrogen molecules and the carbon nanostructure is due to physisorption. At 77 K the adsorption isotherm of all samples can be explained with the Langmuir model, while at room temperature the storage capacity is a linear function of the pressure. The surface area and pore size of the carbon materials were characterized by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. A linear relation between hydrogen uptake and specific surface area (SSA) is obtained for all samples independent of the nature of the carbon material. The best material with a SSA of 2560 m2/g shows a storage capacity of 4.5 wt% at 77 K.  相似文献   

15.
单壁纳米碳管的纯化及其储氢特性   总被引:1,自引:0,他引:1  
针对半连续氢电弧法制备的单壁纳米碳管提出了一种纯化方法。采用HNO3和H2O2回流水煮的方法对单壁纳米碳管进行了纯化处理,透射电镜观察及热重分析表明样品中的无定形炭、纳米碳颗粒及金属催化剂颗粒等杂质可被有效去除,提纯后单壁纳米碳管的收率约为35%,纯度在95%以上;研究发现该纯化方法对单壁纳米碳管的孔径分布和比表面积有较大影响。采用体积法测定了纯化前后单壁纳米碳管样品的储氢容量,结果表明纯化样品的储氢量为1.65%,比未提纯样品(0.56%)有较大提高。  相似文献   

16.
In this paper, we have demonstrated that europium oxide (Eu2O3) is a new type of active catalyst for single-walled carbon nanotubes (SWNTs) growth under suitable conditions. Both random SWNT networks and horizontally aligned SWNT arrays are efficiently grown on silicon wafers. The density of the SWNT arrays can be altered by the CVD conditions. This result further provides the experimental evidence that the efficient catalyst for SWNT growth is more size dependent than the catalysts themselves. Furthermore, the SWNTs from europium sesquioxides have compatibly higher quality than that from Fe/Mo catalyst. More importantly, over 80% of the nanotubes from Eu2O3 are semiconducting SWNTs (s-SWNTs), indicating the preferential growth of s-SWNTs from Eu2O3. This new finding could open a way for selective growth of s-SWNTs, which can be used as high-current nanoFETs and sensors. Moreover, the successful growth of SWNTs by Eu2O3 catalyst provides new experimental information for understanding the preferential growth of s-SWNTs from Eu2O3, which may be helpful for their controllable synthesis.  相似文献   

17.
Photophysics of individual single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) are cylindrical graphitic molecules that have remained at the forefront of nanomaterials research since 1991, largely due to their exceptional and unusual mechanical, electrical, and optical properties. The motivation for understanding how nanotubes interact with light (i.e., SWNT photophysics) is both fundamental and applied. Individual nanotubes may someday be used as superior near-infrared fluorophores, biological tags and sensors, and components for ultrahigh-speed optical communications systems. Establishing an understanding of basic nanotube photophysics is intrinsically significant and should enable the rapid development of such innovations. Unlike conventional molecules, carbon nanotubes are synthesized as heterogeneous samples, composed of molecules with different diameters, chiralities, and lengths. Because a nanotube can be either metallic or semiconducting depending on its particular molecular structure, SWNT samples are also mixtures of conductors and semiconductors. Early progress in understanding the optical characteristics of SWNTs was limited because nanotubes aggregate when synthesized, causing a mixing of the energy states of different nanotube structures. Recently, significant improvements in sample preparation have made it possible to isolate individual nanotubes, enabling many advances in characterizing their optical properties. In this Account, single-molecule confocal microscopy and spectroscopy were implemented to study the fluorescence from individual nanotubes. Single-molecule measurements naturally circumvent the difficulties associated with SWNT sample inhomogeneities. Intrinsic SWNT photoluminescence has a simple narrow Lorentzian line shape and a polarization dependence, as expected for a one-dimensional system. Although the local environment heavily influences the optical transition wavelength and intensity, single nanotubes are exceptionally photostable. In fact, they have the unique characteristic that their single molecule fluorescence intensity remains constant over time; SWNTs do not "blink" or photobleach under ambient conditions. In addition, transient absorption spectroscopy was used to examine the relaxation dynamics of photoexcited nanotubes and to elucidate the nature of the SWNT excited state. For metallic SWNTs, very fast initial recovery times (300-500 fs) corresponded to excited-state relaxation. For semiconducting SWNTs, an additional slower decay component was observed (50-100 ps) that corresponded to electron-hole recombination. As the excitation intensity was increased, multiple electron-hole pairs were generated in the SWNT; however, these e-h pairs annihilated each other completely in under 3 ps. Studying the dynamics of this annihilation process revealed the lifetimes for one, two, and three e-h pairs, which further confirmed that the photoexcitation of SWNTs produces not free electrons but rather one-dimensional bound electron-hole pairs (i.e., excitons). In summary, nanotube photophysics is a rapidly developing area of nanomaterials research. Individual SWNTs exhibit robust and unexpectedly unwavering single-molecule fluorescence in the near-infrared, show fast relaxation dynamics, and generate excitons as their optical excited states. These fundamental discoveries should enable the development of novel devices based on the impressive photophysical properties of carbon nanotubes, especially in areas like biological imaging. Many facets of nanotube photophysics still need to be better understood, but SWNTs have already proven to be an excellent starting material for future nanophotonics applications.  相似文献   

18.
Dense alumina composites with different carbon nanotube content were prepared by colloidal processing and consolidated by Spark Plasma Sintering (SPS). Single-wall carbon nanotubes (SWNTs) were distributed at grain boundaries and also into agglomerates homogeneously dispersed. Carrying out Vickers hardness tests on the cross-section surfaces instead of top (or bottom) surfaces has shown a noticeable increase in the reliability of the hardness measurements. This improvement has been mainly attributed to the different morphology of carbon nanotube agglomerates, which however does not seem to affect the Vickers hardness value. Composites with lower SWNT content maintain the Vickers hardness of monolithic alumina, whereas it significantly decreases for the rest of compositions. The decreasing trend with increasing SWNT content has been explained by the presence of higher SWNT quantities at grain boundaries. Based on the results obtained, a method for optimizing Vickers hardness tests performance on SWNT/Al2O3 composites sintered by SPS is proposed.  相似文献   

19.
The effect of the incorporation of single‐walled carbon nanotubes (SWNTs) onto a diglycidyl ether of bisphenol A‐based (DGEBA) epoxy resin cure reaction was investigated by thermal analysis and Raman spectroscopy. The results of the investigation show that SWNTs act as a strong catalyst. A shift of the exothermic reaction peak to lower temperatures is, in fact, observed in the presence of SWNTs. Moreover, these effects are already noticeable at the lowest SWNT content investigated (5%) with slight further effects at higher concentrations, suggesting a saturation of the catalyzing action at the higher concentrations studied. The curves obtained under isothermal conditions confirm the results obtained in nonisothermal tests showing that the cure reaction takes less time with respect to the neat epoxy. The thermal degradation of cured DGEBA and DGEBA/SWNT composites was examined by thermogravimetry, showing a faster thermal degradation for DGEBA–SWNT composites. Raman spectroscopy was successfully applied to demonstrate that the observed changes in the cure reaction of the composites lead to a different residual strain on the SWNT bundles following a different intercalation of the epoxy matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 452–458, 2003  相似文献   

20.
《Diamond and Related Materials》2007,16(4-7):1116-1120
In the arc plasma jet method, a large amount of soot including single-wall carbon nanotubes (SWNTs) can be produced in a short time (1–2 g/min). However, a lot of impurities, such as amorphous carbon and catalyst metals, are included in the produced soot besides SWNT. Purification is indispensable to apply SWNTs industrially, but it was difficult until recently. Here, we report that SWNTs can be purified easily in large quantities by reflux in the hydrogen peroxide solution using catalyst of iron particle, which can activate the oxidation reaction of hydrogen peroxide solution. Higher than 90 wt.% purity of SWNTs are obtained by this technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号