首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The early age ambient temperature hydration of a hybrid cement formulation containing very high volumes of coal fly ash (~80% by dry mass) and activated by Na2SO4 is presented. The Na2SO4 salt acts as a safe and convenient in situ source of alkali to activate fly ash glassy phases without undesirable effects on cement clinker hydration. Comparison to a reference paste with gypsum instead of sodium sulfate revealed that Na2SO4 reduced setting times, shortened the induction period, and increased early alite hydration and compressive strength development, but also restricted ettringite formation. When replacing the active fly ash component for milled sand of a similar particle size, the Na2SO4‐activated pastes set even quicker, no ettringite was observed, and early strengths were considerably reduced. Possible reaction mechanisms in the hybrid pastes are discussed.  相似文献   

2.
This paper presents a laboratory study on the properties of high-volume fly ash high-strength concrete incorporating nano-SiO2 (SHFAC). The results were compared with those of control Portland cement concrete (PCC) and of high-volume fly ash high-strength concrete (HFAC). Assessments of these concrete mixes were based on short- and long-term performance. These included compressive strength and pore size distribution. Significant strength increases of SHFAC compared to the high-volume fly ash high-strength were observed as early as after 3 days curing, and improvements in the pore size distribution of SHFAC were also observed. In this work, the hydration heat of nano-SiO2 fly ash cement systems was also studied in comparison to the fly ash-cement systems and to the pure cement systems. In addition, the weight change of fly ash incorporating nano-SiO2, fly ash, and nano-SiO2 alone after immersed in saturated lime solution was also studied.  相似文献   

3.
Heat treatment is widely used to accelerate the strength-gaining rate of concrete. In general, the ultimate strengths of the heated-treated concrete are lower than those of the standard cured specimens. When ultrafine fly ash (UFA) is included in concrete, the pozzolanic reaction is accelerated through the heat treatment. Sometimes, various chemical activators were used to activate the reactivity of fly ash. In the current study, UFA and slag were used as a replacement for cement, steam curing and chemical activators were used to accelerate hydration of cement and fly ash, and then compared with moist curing. This paper presents the influence of steam curing on the compressive strength of concrete containing UFA with or without slag. The experimental results indicated that the concrete containing UFA has low early strength after 13-h steam curing and that the difference between the 28-day compressive strength of concrete through 13-h steam curing and that of moist-cured concrete is large, but the concrete with UFA and CaSO4 or Ca(OH)2 has a high early strength, thus, the reactivity of fly ash must be accelerated. Concrete containing UFA and ground slag was prepared, whose compressive strengths were improved.  相似文献   

4.
The characteristics and the SO2 capture capacities of sorbents prepared from products of spray-drying flue gas desulfurization (FGD) have been studied. Sorbents were prepared by first slurrying Ca(OH)2 and CaSO3 and/or CaSO4 with and without the addition of fly ash and then drying. Compared to the use of pure Ca(OH)2, the SO2 capture and Ca(OH)2 utilization decreased for sorbents prepared without fly ash and increased for sorbents with fly ash. Flakelike ill-crystallized tobermorites were observed for all the sorbents containing fly ash. In addition, significant amounts of needle-shape Ca4Al2(OH)12SO4 . 6H2O and Ca6Al2 (OH)12(SO4)3 . 26H2O (ettringite) were also observed for the sorbents containing CaSO3 and/or CaSO4. These newly formed compounds dissociated into CaSO3 . 0.5 H2O and inert precursors upon sulfation, and were responsible for the high SO2 capture capacities and Ca(OH)2 utilizations of the sorbents prepared with fly ash.  相似文献   

5.
Pozzolanic properties of reject fly ash in blended cement pastes   总被引:2,自引:0,他引:2  
Low-grade fly ash (reject fly ash, r-FA), a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process, has remained unused due to its high carbon content and large particle size. But it may be used in certain areas, such as in solidification and stabilization processes of hazardous waste and materials for road base or subbase construction, which require relatively lower strength and reactivity. It is therefore necessary to extend research on the properties of r-FA and explore its possible applications. This paper presents experimental results of a study on the mechanical and hydration properties of cementitious materials prepared by blending r-FA with ordinary Portland cement (OPC). Parallel mixes were also prepared with the good ash [i.e., classified fine fly ash (f-FA)] for comparison. Selective chemical activators were added to the mix to study the effects of the activators on the properties of the blend system. The results show that r-FA generally has a lower rate of hydration than f-FA particularly at the early stage of hydration. Adding Ca(OH)2 alone almost had no effect on accelerating the hydration of r-FA. But adding a small quantity of Na2SO4 or K2SO4 together with Ca(OH)2 significantly accelerated the hydration reaction. The results of the compressive strength measurement correlated nicely with the degree of hydration results. It was also found that water-to-binder ratio (w/b) was an important factor in affecting the strength development and the hydration degree of r-FA pastes.  相似文献   

6.
石灰石粉和粉煤灰对复合胶凝材料性能的影响   总被引:1,自引:0,他引:1  
研究了石灰石粉和粉煤灰对复合胶凝材料性能的影响。试验结果表明,石灰石粉具有比粉煤灰更好的减水效应;在石灰石粉-粉煤灰-水泥三元复合胶凝材料中,石灰石粉和粉煤灰掺量相同时,其复合胶凝材料的早期强度比粉煤灰高,而后期更低,但两者复合时,强度仍更高。  相似文献   

7.
This paper presents a laboratory study on the strength development of concrete containing fly ash and optimum use of fly ash in concrete. Fly ash was added according to the partial replacement method in mixtures. A total of 28 mixtures with different mix designs were prepared. 4 of them were prepared as control mixtures with 250, 300, 350, and 400 kg/m3 cement content in order to calculate the Bolomey and Feret coefficients (KB, KF). Four groups of mixtures were prepared, each group containing six mix designs and using the cement content of one of the control mixture as the base for the mix design. In each group 20% of the cement content of the control mixture was removed, resulting in starting mixtures with 200, 240, 280, and 320 kg/m3 cement content. Fly ash in the amount of approximately 15%, 25%, 33%, 42%, 50%, and 58% of the rest of the cement content was added as partial cement replacement. All specimens were moist cured for 28 and 180 days before compressive strength testing. The efficiency and the maximum content of fly ash that gives the maximum compressive strength were obtained by using Bolomey and Feret strength equations. Hence, the maximum amount of usable fly ash amount with the optimum efficiency was determined.This study showed that strength increases with increasing amount of fly ash up to an optimum value, beyond which strength starts to decrease with further addition of fly ash. The optimum value of fly ash for the four test groups is about 40% of cement. Fly ash/cement ratio is an important factor determining the efficiency of fly ash.  相似文献   

8.
Effect of steam curing on class C high-volume fly ash concrete mixtures   总被引:2,自引:0,他引:2  
The effect of steam curing on concrete incorporating ASTM Class C fly ash (FA), which is widely available in Turkey, was investigated. Cement was replaced with up to 70% fly ash, and concrete mixtures with 360 kg/m3 cementitious content and a constant water/binder ratio of 0.4 were made. Compressive strength of concrete, volume stability of mortar bar specimens, and setting times of pastes were investigated. Test results indicate that, under standard curing conditions, only 1-day strength of fly ash concrete was low. At later ages, the strength values of even 50% and 60% fly ash concretes were satisfactory. Steam curing accelerated the 1-day strength but the long-term strength was greatly reduced. Setting time of fly ash-cement pastes and volume stability of mortars with 50% or less fly ash content were found to be satisfactory for standard specimens. In addition, for steam curing, this properties were acceptable for all replacement ratios.  相似文献   

9.
Despite the myriad of research efforts on exploiting fly ash as an alternative binder, its current role in industry is largely restricted to the supplementary use, which enables only partial replacement of conventional portland cement. Herein, we propose an unprecedented binder composite with the promising early-age strength, which is cost-effective and reduces the CO2 footprint compared with portland cement. The major constituent is fly ash occupying 76.4%-80.3% by the total mass of the constituents, while calcium oxide, nanosilica, and the minimum amounts of sodium-based activators are added to induce the early-age strength development. Optimization of the composition via the Taguchi design of experiments produced the early (7-day) compressive strength of 16.18 MPa. This value is encouraging considering that it is comparable to that of conventional portland cement and that a cementless composition with the minimum amounts of sodium-based activators was employed. The extensive materials analysis demonstrates that the starting Ca/Na molar ratio and the amount of nanosilica play instrumental roles in strength development by influencing the formation of key reaction products, which include the sodium-substituted AFm phase (the U-phase), katoite and portlandite. Overall, the promising early-age strength coupled with the significantly decreased amount of sodium-based chemicals and the reduced CO2 footprint will lay a foundation for development of low-cost, environmentally friendly binder in diverse industries.  相似文献   

10.
In this study, the effect of nano silica on the short term severe durability performance of fly ash based geopolymer concrete (GPC) specimens was investigated. Four types of GPC were produced with two types of low calcium fly ashes (FAI and FAII) with and without nano silica, and ordinary Portland cement concrete (OPC) concrete was also cast for reference. For the geopolymerization process, the alkaline activator has selected a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) with a ratio (Na2SiO3/ NaOH) of 2.5. Main objectives of the study were to investigate the effect of usability or replaceability of nano silica-based low calcium fly ash based geopolymer concretes instead of OPC concrete in structural applications and make a contribution to standardization process of the fly ash based geopolymer concrete. To achieve the goals, four types of geopolymer and OPC concretes were subjected to sulfuric acid (H2SO4), magnesium sulfate (MgSO4) and seawater (NaCl) solutions with concentrations of 5%, 5%, and 3.5%, respectively. Visual appearances and weight changes of the concretes under chemical environments were utilized for durability aspects. Compressive, splitting tensile and flexural strength tests were also performed on specimens to evaluate the mechanical performance under chemical environments. Results indicated that FAGPC concretes showed superior performance than OPC concrete under chemical attacks due to low calcium content. Amongst the chemical environments, sulfuric acid (H2SO4) was found to be the most dangerous environment for all concrete types. In addition, nano silica (NS) addition to FAGPC specimens improved both durability and residual mechanical strength due to the lower porosity and more dense structure. The FAIIGPC specimens including nano silica showed the superior mechanical performance under chemical environment.  相似文献   

11.
The influence of the contents of the clinker, activators and fly ash on the properties of blended cement with high fly ash content was studied. Experimental data from X-ray diffraction and pore size distribution indicated that the main hydration product of the fly ash blended cement was C-S-H gel, ettringite and a small amount of Ca(OH)2. The volume porosity of the pores with diameter bigger than 0.1 μm was lower than that of the micro pores and gel pores with diameter lower than 0.05 μm. The amount of chemical combined water has increased with the curing age duration, while the content of Ca(OH)2 has reduced after 7 days.  相似文献   

12.
刘勇  冯竟竟  于雷  刘洋  杨广帅  王舜 《硅酸盐通报》2017,36(5):1718-1722
对比研究了生物质灰与普通粉煤灰在粒度分布、颗粒形态、化学组成、活性指数等方面的不同,并开展了不同掺量生物质灰对水泥硬化浆体抗压强度的影响研究.结果表明:生物质灰颗粒形状不规则、平均粒径及粒径分布范围较大,具有特有的细长纤维状颗粒,且其活性组分Al2O3不足普通粉煤灰的三分之一;生物质灰的火山灰活性小于普通粉煤灰;相同掺量下,生物质灰-水泥复合胶砂各龄期的抗压强度均小于普通粉煤灰-水泥复合胶砂,生物质灰掺量越大,复合胶砂的强度相比纯水泥组下降程度越大;与普通粉煤灰相比,掺加生物质灰的硬化水泥浆体微观结构更为疏松多孔,特别是其特有的细长纤维状颗粒的存在.  相似文献   

13.
It is shown that by varying three factors a 4:1 range in creep after two years can be obtained with concretes that are of the same strength grade and slump, and which attain the specified strength before the load is applied. The factors are the temperature at which the concrete is maintained whilst it gains the specified strength, the SO3 content of the cement, and whether or not fly ash is used. For a creep range as wide as 4:1 the SO3 and fly ash contents need only change within the usual limits encountered in practice, and the temperature change need only be comparable with that between winter and summer in a temperate climate. The extreme magnitude of this effect is emphasized by the observation that changes in paste content sufficient to cause slump to drop from 160 mm to zero produce a creep range of only 1.6:1.  相似文献   

14.
The current work scrutinizes the effectuation of seawater on morphological properties, pore structure, and compressive strength during the hydration process of fly ash blended cement at 3, 7, 28, 56, and 90 days to better understand the influence of salinity conditions of seawater on the microstructural modification and strength development of the hydration products as well as the total porosity. The chemical reaction's mechanism of mightily soluble salts, for example, Mg2SO4 and NaCl, with hydrated fly ash and blended cement (calcium-bearing phases) was also confirmed. Fourier-transform infrared spectroscopy has been appointed to observe and characterize the energetics of variation in the formulation of portlandite (CH), calcium silicate hydrate, gypsum (Gy), ettringite (AFt), and calcium chloroaluminate (Friedel's salt [FS]) throughout the hydration process of fly ash blended cement with seawater in comparison with deionized water. X-ray diffraction analysis exposed that the peak intensities of FS, portlandite, and some particular phases of the hydrated fly ash blended cement in seawater are higher and sharper than the comparable peaks in deionized water. Mercury intrusion porosimetry-measurements have been appointed that the total porosity of artificial seawater (ASW) was decreased from 28.9% at 3 days to 19.4% at 56 days. In addition, the average, median, and critical pore diameter were decreased in ASW while compared to deionized water (DIW). The reaction products of this work were also characterized using scanning electron microscopy, EDS, compressive strength, and isothermal calorimeter.  相似文献   

15.
Guanghong Sheng  Qin Li  Feihu Li 《Fuel》2007,86(16):2625-2631
Fly ash coming from a circulating fluidized bed combustion (CFBC) boiler co-firing coal and petroleum coke (CFBC fly ash) is very different from coal ash from traditional pulverized fuel firing due to many differences in their combustion processes, and thus they have different effects on the properties of Portland cement. The influences of CFBC fly ash on the strength, setting time, volume stability, water requirement for normal consistency, and hydration products of Portland cement were investigated. The results showed that CFBC fly ash had a little effect on the strength of the Portland cement when its content was below 20%, but the strength decreased significantly if the ash content was over 20%. The water requirement for normal consistency of cement increased from 1.8% to 3.2% (absolute increment value) with an addition of 10% CFBC fly ash; and the free lime (f-CaO) content of CFBC fly ash affected the value of increasing. The setting time decreased with an increase of CFBC fly ash content. The volume stability of the cement was qualified even when the content of SO3 and f-CaO reached 4.48% and 3.0% in cement, respectively. The main hydration productions of cement with CFBC fly ash were C-S-H (hydrated calcium silicate), AFt (ettringite), and portlandite.  相似文献   

16.
In this paper, the two sets of concretes under attack of erosion solution of sulfate and chloride salt were investigated. The one set is the plain concrete without fly ash addition. The other set is the concrete with 20% and 30% of fly ash addition, respectively. The corrosion solution includes three types: 3.5%NaCl, 5% Na2SO4, and a composite solution of 3.5%NaCl and 5% Na2SO4. In addition, two corrosion regimes were employed in this study: naturally immersion (stored in corrosion solution for long duration), drying-immersion cycles. The damage process of the two sets of concretes was systematically investigated under the above three types of corrosion solutions and two corrosion regimes. The interaction between sulfate and chloride salt was also quantitatively determined. The experimental results shown that a presence of sulfate in the composite solution increased the resistance to chloride ingress into concretes at early exposure period, but the opposition was observed at latter exposure period. For the damage of concretes, a presence of chloride in the composite solution reduces the damage of concrete caused by sulfate. Addition of fly ash may significantly improve the resistance to chloride ingress into concretes and the resistance to sulfate erosion when a suitable amount of fly ash addition and low water-to-binder (W/B) was employed. Studies of the different corrosion regimes indicate that concretes stored in corrosion solution for about 850 d, the changes in relatively dynamic modulus of elastically (RDME) could be described by three stages: linearly increasing period, steady period, and declining period. Whereas for drying-immersion cycles, an accelerated trend could be found. The changes in RDME included an accelerated decreased stage, linearly increased stage, and then a slowly decreased stage, finally accelerating failure stage. In order to elucidate the above experimental results in a microscopic scale, the mechanism was also investigated by the modern microanalysis techniques.  相似文献   

17.
The volatilization of fly ash has been examined by a number of techniques including TGA—DTA, Knudsen cell mass spectrometry, volatilization of neutron-activated fly ash, and X-ray fluorescence analysis of sized fly ash, low-temperature ash, and the parent coal. At low temperatures, H2O, CO2, SO2, and a number of organic compounds are the primary volatile species as determined by mass spectrometry. Analysis of the volatiles collected from activated fly ash heated to temperatures up to 1400 °C shows that Hg, Se, As, Br, and I are nearly completely volatilized. The analysis of the bulk and size fractions of fly ash, and parent coal, is consistent with this and provides evidence for volatilization of 15 elements during coal combustion. Comparison of coal and fly ash compositions also shows that significant amounts of Se are still present in the gas phase at the precipitators and more than 50 wt % of the Se is contained in the stack emissions. The results are consistent with present models for fly ash formation and trace element enrichment.  相似文献   

18.
通过利用工业废渣脱硫石膏代替天然石膏,粉煤灰代替部分铝矾土制备硫铝酸钙矿物,同时研究了硫铝酸钙对不同标号(C25,C30,C40)混凝土中粉煤灰的激发性能。研究表明利用工业废渣在1280℃不需保温即可制备纯硫铝酸钙矿物。此外,研究表明硫铝酸钙在不同掺量粉煤灰的混凝土中可以促进粉煤灰的早期水化,同时生成钙钒石,有效的提高混凝土3d、28d的强度。对于C25,C30,C40级混凝土的28d强度分别提高了了19.7%,23.2%,54.9%。  相似文献   

19.
EM-microanalysis was carried out on various ettringites produced by the reaction of saturated gypsum solution with cement and cement plus fly ash mixes. In addition to the main components CaO, Al2O3 and SO3, SiO2 was found to be included in the lattice at the expense of Al2O3. The occurrence of Fe2O3 is of minor significance. The various ettringite crystals exhibit a strongly changing composition in all components. Furthermore it is thought that the composition changes in the course of time, leading to a zonal structure of the individual crystals. An Si-ettringite was produced in synthetic mixtures. As microanalysis of individual crystals shows, they must have the following composition: Ca6 (Si(OH)6)2 (SO4)3 24H2O (?)  相似文献   

20.
Self-cementitious properties of fly ash from circulating fluidized bed combustion boiler co-firing coal and high-sulphur petroleum coke (CPFA) were investigated. CPFA was self-cementitious which was affected by its fineness and chemical compositions, especially the contents of SO3 and free lime (f-CaO). Higher contents of SO3 and f-CaO were beneficial to self-cementitious strength; the self-cementitious strength increases with a decrease of its 45 μm sieve residue. The expansive ratio of CPFA hardened paste was high because of generation of ettringite (AFt), which was influenced by its water to binder ratio (W/A), curing style and grinding of the ash. The paste cured in water had the highest expansive ratio, and grinding of CPFA was beneficial to its volume stability. The hydration products of CPFA detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were portlandite, gypsum, AFt and hydrated calcium silicate (C-S-H).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号