首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pure and silver-containing carbon fibers were prepared from isotropic pitch precursors supplied by Conoco, Inc., and a Korean research team and activated in carbon dioxide to varying degrees of burn-off. The specific activation rates for the carbon fibers were measured as well as the nitrogen adsorption characteristics of the activated carbon fibers. Scanning electron microscopy was used to investigate the surface morphology and the behavior of silver particles during the activation process. Molecular composition of the two pitch precursors was determined using a gas chromatograph mass spectrometer and a MALDI TOF mass spectrometer. Results showed that specific surface area increased with the burn-off, and the trends were similar for the pure and silver-containing fibers formed from both isotropic pitch precursors. However, the catalytic behavior of silver during activation, the activation rate, and even the pore characteristics of the activated fiber were found to be dependent on the molecular composition of the precursor pitch.  相似文献   

2.
Taixi anthracite was used as a precursor to prepare activated carbons (AC) for SO2 adsorption from flue gas. In this work the activated carbons were prepared by physical activation with steam. Specifically, the effects of activation temperature and burn-off degree on the physico-chemical properties of the resulting AC samples were comparatively studied. The different types of pore volumes, pore size distributions and surface chemistries of the activated carbons on the SO2 adsorption were also analyzed. The results show that the increasing burn-off leads to samples with continuous evolution of all types of pores except ultramicropore. The ultramicropore volume increases to a maximum of 0.169 cm3/g at around 50% burn-off and then decreases for 850 °C activation. At higher activation temperature, the micropore volume decreases and the mesopore structure develops to a certain extent. For all the resulting AC samples, the quantities of the basic surface sites always appear much higher than the amount of the acidic sites. The activated carbon prepared with higher micropore volume, smaller median pore diameter and higher quantities of the basic surface sites represents better SO2 sorption property.  相似文献   

3.
Silver acetate dissolved in quinoline was mixed thoroughly with the spinnable isotropic petroleum pitch dissolved in the same solvent. After removing the quinoline, the resulting pitch was spun, stabilized, carbonized, and finally activated at 900°C under a stream of steam. The fiber with 33 wt% yield after activation contained 0.63 wt% of fine silver particles and showed N2-BET specific surface area of 740 m2/g. It showed antibacterial activity against Staphylococcus aureus and Escherichia coli, before and after soaking in flowing tap water for 20 days. How to improve spinnability of the pitch containing silver acetate and how to increase the specific surface area effectively by the activation process are problems remaining to be solved.  相似文献   

4.
The objective of this study is to relate textural and surface characteristics of microporous activated carbon to their methane adsorption capacity. Oil palm shell was used as a raw material for the preparation of pore size controlled activated carbon adsorbents. The chemical treatment was followed by further physical activation with CO2. Samples were treated with CO2 flow at 850 °C by varying activation time to achieve different burn-off activated carbon. H3PO4 chemically activated samples under CO2 blanket showed higher activation rates, surface area and micropore volume compared to other activation methods, though this sample did not present high methane adsorption. Moreover, it was shown that using small proportion of ZnCl2 and H3PO4 creates an initial narrow microporosity. Further physical activation grantees better development of pore structure. In terms of pore size distribution the combined preparation method resulted in a better and more homogenous pore size distribution than the conventional physical activation method. Controlling the pore size of activated carbon by this combined activation technique can be utilized for tuning the pore size distribution. It was concluded that the high surface area and micropore volume of activated carbons do not unequivocally determine methane capacities.  相似文献   

5.
A mathematical model has been applied to N2/77 K and CO2/273 K adsorption isotherms for a series of activated carbons prepared by carbonising olive stones in N2 and then activating them in CO2 to six different levels of burn-off in the range 8–80%. Narrow and wide micropore volumes of activated carbons were calculated from the Dubinin-Radushkevich and Dubinin-Astakhov equations considering one, two and three micropore size distributions in each sample, and allowing a variation of the micropore volume and characteristic energy of each distribution with the burn-off. The flexible simplex method was applied to obtain the parameters of each distribution in the mathematical model. Generally, it was found that increasing the number of micropore size distributions above two did not significantly improve fits. Each isotherm was fitted using six parameters at most. However, various constraints were imposed, and the parameters were estimated from each isotherm using non-linear, least-squares regression analysis. The results obtained confirm the valuable use of CO2/273 K adsorption to quantify the narrow microporosity of activated carbons. Differences between N2/77 K and CO2/273 K adsorption in microporous activated carbons were due to the wide microporosity. An agreement between micropore volumes obtained from CO2/273 K adsorption and that corresponding to one of the two distributions of micropores obtained from N2/77 K adsorption was obtained. The Dubinin-Radushkevich equation was more successful than the Dubinin-Astakhov equation in the quantification of the microporosity with N2/77 K and CO2/273 K. On the other hand, the exponent n of the Dubinin-Astakhov equation was better correlated with the burn-off of the carbons than with the parameter B.  相似文献   

6.
A series of activated carbon fibers (ACFs) produced from organometallics compounds such as Y(acac)3 or Al(acac)3/pitch composites were characterized. The pore-size, surface state and graphitic crystallite size were examined by means of N2 adsorption isotherm, X-ray photoelectron spectroscopy and X-ray diffraction (XRD) analysis. The presence of Y or Al increased the pore-size. Y(acac)3/pitch and Al(acac)3/pitch-based ACFs activated at 1148 and 1173 K, respectively, had an appreciable amount of mesopores. The size of the micrographites structure of the organometallics/pitch-based ACF composites by XRD was slightly greater than that of the pitch-based ACF. Ar ion etching using X-ray photoelectron spectroscopy showed that Y or Al atoms are coated with carbon layers.  相似文献   

7.
Thanh X. Nguyen 《Carbon》2005,43(4):775-785
In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (<0.6 nm), the pore size distribution of the high burn-off samples becomes broader, with a significant increase in proportion of larger pores. The results of pore wall thickness distribution are generally consistent with development of porosity with increasing degree of burn-off. Further they show good correspondence with X-ray diffraction.  相似文献   

8.
This work focused on the preparation of activated carbon from eucalyptus and wattle wood by physical activation with CO2. The preparation process consisted of carbonization of the wood samples under the flow of N2 at 400°C and 60 min followed by activating the derived chars with CO2. The activation temperature was varied from 600 to 900°C and activation time from 60 to 300 min, giving char burn-off in the range of 20/2-83%. The effect of CO2 concentration during activation was also studied. The porous properties of the resultant activated carbons were characterized based on the analysis of N2 adsorption isotherms at −196°C. Experimental results showed that surface area, micropore volume and total pore volume of the activated carbon increased with the increase in activation time and temperature with temperature exerting the larger effect. The activated carbons produced from eucalyptus and wattle wood had the BET surface area ranging from 460 to 1,490 m2/g and 430 to 1,030 m2/g, respectively. The optimum activation conditions that gave the maximum in surface area and total pore volume occurred at 900°C and 60 min for eucalyptus and 800°C and 300 min for wattle wood. Under the conditions tested, the obtained activated carbons were dominated with micropore structure (∼80% of total pore volume).  相似文献   

9.
Powder mixtures of zinc oxide and tin oxide in the molar ratio, ZnO:SnO2 = 2:1, were mechanically activated in a planetary ball mill in the time intervals of 0–160 min. The adsorption–desorption isotherms, specific surface area, pore volume and pore size distribution spectra of mechanically activated powder mixtures were established by N2 adsorption at 77 K. Microstructure analysis was performed using scanning electron microscopy (SEM) and digital pattern recognition (DPR) microstructure quantity analysis. The phase composition of the mixed powders was determined by X-ray analysis. Mechanochemical activation of the ZnO–SnO2 system resulted in fine grinding of the starting particles and generation of contacts between them, mass transfer at contacts zones and formation of Zn2SnO4 spinel, which was observed after 40 min of activation.  相似文献   

10.
The results of experimental and kinetic studies on pore development during CO2 activation of char derived from oil-palm shell, an abundant solid waste in some tropical countries, were presented in this paper. CO2 was used as an activating agent instead of air because the 21% oxygen content in air would cause severe burn-off of carbon contents, resulting in detrimental effects on pore development. In preparing the activated carbon from oil-palm shell by CO2 activation, size of the starting material and CO2 gas flow rate were identified to minimize the effects of gas diffusion. Under a kinetic-controlled condition, the effects of char characteristics and activation temperature on BET and micropore surface areas, porosity and pore size distribution were investigated. For the char prepared from oil-palm shell at a low carbonization temperature of 873 K, the activated carbon with a reasonably high pore surface area and predominant microporosity was obtained.Its applications are in gas-adsorbing processes such as air pollutant removal and gas separation. A random pore model was developed to describe pore development during the carbon-CO2 reaction process. Model predictions were compared with data from thermogravimetric analyses. Kinetic study showed that the activation reaction rate was dependent on both the initial pore structure of the char and the transient pore structure which was developed progressively during the activation process.  相似文献   

11.
Palladium-doped activated carbon fibers are being evaluated as candidate materials for enhanced hydrogen storage at near ambient conditions. Pd-doped fibers were spun using a Pd salt mixed with an isotropic pitch precursor. Experimental techniques such as in situ X-ray analysis, thermogravimetric studies, scanning transmission electron microscopy and gas adsorption were employed to understand how processing conditions for the production of Pd-doped activated carbon fibers affect the microstructure, pore development, and dispersion of metal particles throughout the fibers. The results showed that PdO phase is present in the stabilized fibers and that this oxide phase is stable up to about 250 °C. The oxide phase transforms into Pd metal with increasing heat treatment temperature, going through the formation of an intermediate carbide phase. Sintering of Pd particles was observed with heat treatment at temperatures over 750 °C. It was also found that pore development during physical activation with CO2 was not significantly affected by the presence of Pd particles within the fibers.  相似文献   

12.
Fractal characteristic of three Chinese coals   总被引:1,自引:0,他引:1  
Hu Song  Li Min  Xiang Jun  Sun Lushi  Li Peisheng  Su Sheng  Sun Xuexin 《Fuel》2004,83(10):1307-1313
Experimental and theoretical investigation about coal/char structure is presented. Surface structures of parent coal and char with different burn-off ratios were analyzed. We introduced the fractal theory into Scanning Electron Microscopy image analysis and utilize the particle surface fractal dimension (Dps) to quantitatively describe the surface character of coal/char particles. Dps of three Chinese coals reach their maximum in the 35-45 wt% char burn-off interval and then decrease with increasing carbon burn-off ratio. The inner-pore information of coal/char particles was determined by N2 isotherm adsorption/desorption. Using fractal BET model, internal surface fractal dimension (Ds) of coal/char particles was calculated. The Ds change trend of three Chinese coals is similar to their SBET development. It means the Ds can quantitatively describe the inner pore structure character of coal/char particles.  相似文献   

13.
Silver particles in silver-containing activated carbon fibers prepared from liquefied wood were characterized by X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscope, and nitrogen adsorption isotherms. Silver irons (Ag+) and metallic silver (Ag0) were detected in fibers, and the amount of Ag0 was much higher than that of Ag+. Ag0 were migrated and aggregated together to form silver particles with a wide size (0–5μm), which were distributed in micropores, mesopores, and surface of fibers. The mean size of silver particles on the surface was directly related to soaking concentration, while the larger silver particles were easier to peel off from the surface. Also, the increasing micropores and mesopores were blocked by silver particles at higher concentration, and some blocked mesopores were converted into micropores. When the washing treatment was carried out, the silver particles on the surface were removed significantly, resulting in an increase in mesopore quantity. However, most of the silver particles in micropores were firmly supported. The silver-containing activated carbon fibers showed the high and lasting antibacterial activity.  相似文献   

14.
In this work the use of coffee endocarp as precursor for the production of activated carbons by steam and CO2 was studied. Activation by both methods produces activated carbons with small external areas and microporous structures having very similar mean pore widths. The activation produces mainly primary micropores and only a small volume of larger micropores. The CO2 activation leads to samples with higher BET surface areas and pore volumes when compared with samples produced by steam activation and with similar burn-off value. All the activated carbons produced have basic characteristics with point of zero charge between 10 and 12. By FTIR it was possible to identify the formation on the activated carbon's surface of several functional groups, namely ether, quinones, lactones, ketones, hydroxyls (free and phenol); pyrones and Si–H bonds.  相似文献   

15.
Two activated carbons prepared from almond shells and olive stones were reacted with air at 350°C to different percentages burn-off. The reactivity was studied in the temperature range 350–500°C where the reaction is relatively slow. The activated carbon from almond shells is more resistant to the reaction with air and the activation energy of that reaction is 101 kJ mol−1. The adsorption of N2 at 77 K has been used to characterize the adsorptive properties and surface area of all the obtained products, which have high surface areas (around or above 1000 m2 g−1). The gas adsorption results, together with mercury porosimetry have allowed a study of the variation of surface area and porosity as a function of the burn-off. In any case, the exposure of the active carbons to air at 350°C for several days does not considerably affect their adsorptive properties even for a weight loss up to 50%.  相似文献   

16.
H. Teng  H.-C. Lin 《Carbon》1997,35(12):1811-1817
Surface structures and reactivities of carbons gasified in N2O and in O2 are compared in this study. The carbon employed was derived from pyrolysis of phenol-formaldehyde resins. It was found that greater surface area and pore volume are created for the carbon gasified in O2 than that in N2O. At high extents of burn-off the carbon gasified in N2O shows a larger mesopore volume than that in O2. The reactivity per unit surface area of the carbon in N2O decreases with the extent of burn-off, while that in O2 remains relatively constant at various extents of burn-off. Surfaces in carbon micropores do not appear to be fully utilized in the N2O-carbon reaction. It is confirmed that standard N2 or CO2 surface area is not a proper characterization of the reactive surface area of carbon gasified in N2O.  相似文献   

17.
The influence of pretreatment and activation conditions on anthracite activation was investigated. Separation of low ash coals by using dense media was conducted to obtain appropriate raw materials for activation. Activated carbons were produced from crushed and granule coals by physical activation (steam or CO2) and physical activation with chemical pretreatment in mild and strong conditions. Microporous activated carbons having a surface area of 900 m2/g were produced by steam activation from granules with 60% burn-off for 3 hrs of activation. Chemical pretreatment at the strong condition increased the surface area by 30% as compared with non-treated activated carbons. Chemical pretreatment, in general, affected activation degree, so pore volume increased by 20% and burn-off increased remarkably at the identical activation conditions. CO2 activation was proven to be an effective method for producing microporous activated carbons having an average pore diameter of 20 å.  相似文献   

18.
Polyacrylonitrile (PAN) hollow fibers were pretreated with ammonium dibasic phosphate, then further oxidized in air, carbonized in nitrogen, and activated with carbon dioxide. The effects of activation time of a precursor fiber on the microstructure, specific surface area, pore‐size distribution, and adsorption properties of PAN‐based activated carbon hollow fibers (PAN‐ACHF) were studied in this work. The BET surface area of PAN‐ACHF and surface area of mesopores gradually increase with activation time extending, and reach the maximum values, 780 and 180 m2 g?1, respectively, when fibers are activated at 800°C for 100 min. The adsorption ratio to creatinine changes little with activation time extending and all values over all activation time are above 90%. The adsorption ratio to VB12 gradually increases with activation time extending before 60 min, and then becomes relatively constant from 60 to 100 min. The number of pores on the surface of PAN‐ACHF increases with activation time extending. The amount of mesopores in PAN‐ACHF made of fibers activated for different time increases with activation time extending and the dominant pore sizes of mesopores in PAN‐ACHF range from 2 to 5 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2565–2569, 2006  相似文献   

19.
Fractal characteristics of mesoporous carbon electrodes were investigated with various pore structures using the N2 gas adsorption method and the transmission electron microscopy (TEM) image analysis method. The mesoporous carbons with various pore structures were prepared by imprinting mesophase pitch used as a carbonaceous precursor with different colloidal silica particles. All imprinted mesoporous carbons were composed of two groups of pores produced from the carbonisation of mesophase pitch and from the silica imprinting. The overall surface fractal dimensions of the carbon specimens were determined from the analyses of the N2 gas adsorption isotherms. In order to distinguish the surface fractal dimension of the carbonisation-induced pore surface from that fractal dimension of the silica-imprinted pore surface, the individual surface fractal dimensions were determined from the image analyses of the TEM images. From the comparison of the overall surface fractal dimension with the individual surface fractal dimensions, it was recognised that the overall surface fractal dimension is crucially influenced by the individual surface fractal dimension of the silica-imprinted pore surface. Moreover, from the fact that the silica-imprinted pore surface with broad relative pore size distribution (PSD) gave lower value of the individual surface fractal dimension than that pore surface with narrow relative PSD, it is concluded that as the silica-imprinted pores comprising the carbon specimen agglomerate, the individual surface fractal dimension of that pore surface decreases.  相似文献   

20.
This study elucidates the stabilization and activation in forming activated carbon fibers (ACFs) from ultra-thin polyacrylonitrile (PAN) fibers. The effect of stabilization time on the properties and structure of resultant stabilized fibers was investigated by thermal analysis, X-ray diffraction (XRD), elemental analysis, and scanning electron microscopy (SEM). Stabilization was optimized by the pyrolysis of ultra-thin PAN fibers in air atmosphere at 280°C for 15 min, and subsequent activation in steam at 1000°C for 0.75 to 15 min. Resultant ACFs were characterized by N2 adsorption at 77 K to evaluate pore parameters, XRD to evaluate structure parameters, and field emission scanning electron microscopy (FESEM) to elucidate surface morphology. The produced ACFs had surface areas of 668–1408 m2/g and a micropore volume to total pore volume ratio from 78 to 88%. Experimental results demonstrate the surface area and micropore volume of 1408 m2/g and 0.687 cm3/g, respectively, following activation at 1000°C for 10 min. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号