首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Magnesium silicate hydrate gels (M-S-H) have been prepared by precipitation. The range of gel compositions lie between Mg/Si molar ratios 0.67-1.0. The gels were subject to short cure, approximately 24 h at approximately 22 °C and longer cure, 180 days at 85 °C, following which they were characterised by XRD, FT-IR and solid-state 29Si NMR. Ageing at longer times and higher temperatures somewhat improves the local ordering. The nature of the partially ordered structures is related to those of M-S-H mineral phases. The structures and compositions of M-S-H gels differ from those of C-S-H gels and partly on that account, C-S-H gels contain little magnesium while M-S-H gels in blended cements coexist with C-S-H but contain little calcium.  相似文献   

2.
This paper describes the synthesis of cements, chemically and structurally related to Ca2SiO4. Silica was obtained from rice hull after heating at 600 °C. Calcium oxide and small amounts of barium chloride were mixed in order to obtain a final (Ca/Si) or (Ca+Ba)/Si ratio equal to 1.95, 1.90, and 1.80, which is lower than in the conventional cement. The solids were mixed and ultrasonically treated for 1 h with a water/solid ratio of about 20. After drying and grinding, the mixtures were heated up to 1100 °C. It was possible, in some cases, to obtain a cementitious material. These cements are structurally related to β-Ca2SiO4 and the lower (Ca+Ba)/Si ratio obtained was 1.95. The initial chemical compositions of these cements are: (Ca1.83+Ba0.12)SiO4 and (Ca1.79+Ba0.16)SiO4. A further lowering in the (Ca+Ba)/Si ratio changes the nature of the silicates.  相似文献   

3.
Phase relations in the title system were studied using crystalline and amorphous precursors. These were treated in sealed steel alloy autoclaves for periods ranging up to 12 months. Many of the synthetic precursors crystallised to give high purity, single-phase preparations.Although the CaO-SiO2-H2O system is marked by metastable phase formation, it is demonstrated that a number of reactions important to establish the low-temperature phase relationships can be shown to occur reversibly and therefore define the phase equilibrium. New stability data are presented for hillebrandite, afwillite, xonotlite, tobermorite and jennite. Synthetic jennite is shown to have a Ca/Si atomic ratio ∼1.45, rather less than the reported 1.5 ratio. A phase diagram revised in light of new knowledge is presented.  相似文献   

4.
Rice hull is an agricultural by-product containing about 20% of silica. Usually, this material is burned at the rice fields generating small silica particles, which may cause respiratory and environmental damage. This work describes the use of rice hull ash as a raw material to prepare Ca2SiO4-related cements, which is a component of commercial Portland cement. Rice hull was heated at 600 °C rendering silica with a surface area of 21 m2 g−1. This material was mixed with CaO and BaCl2·2H2O in several proportions, added stoichiometricaly in order to keep a ratio (Ca+Ba)/Si=2. The solids were mixed with water 1:20 (w/w) and sonicated for 60 min. The suspensions were dried and heated at several temperatures (from 500 to 1100 °C). The resulting solids were analyzed by FT-IR spectroscopy and X-ray diffraction. Cements with structure similar to that of β-Ca2SiO4 were obtained at temperatures as low as 700 °C, according to the composition.  相似文献   

5.
The dehydration of Fe-ferrierites doubled the decomposition of N2O at 200 ° C and corresponding deposition of oxygen. The rehydration resulted in a reversible process. Samples with iron located predominantly in cationic positions (Fe/Al 0.05–0.25) exhibited the O dep /Fe ratio of ca. 0.5 and 1 after pretreatment at 450 and 700 °C, respectively.  相似文献   

6.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

7.
Magnesium silicon nitride MgSiN2 was prepared by direct nitridation of Si/Mg2Si/Mg/Si3N4 powder compact in a temperature range 1350-1420 °C. The thermal stability examination showed that MgSiN2 is stable up to 1400 °C at 0.1 MPa N2 pressure. The activation energy of decomposition of MgSiN2 calculated from the temperature dependence of mass loss in the range of 1400-1650 °C is ΔH = 501 kJ mol−1. The time dependence and nitrogen pressure dependence of MgSiN2 decomposition was also investigated at constant temperature. MgSiN2 is stable at 1560 °C in 0.6 MPa nitrogen atmosphere. Using these experimental data together with the heat capacity published in a literature the Gibbs energy of formation of MgSiN2 was calculated in a temperature range 25-2200 °C.  相似文献   

8.
The subject of this paper is the effect of foreign cations on the reactivity of the CaO-SiO2-Al2O3-Fe2O3 system. One reference mixture and eighteen modified mixtures, prepared by mixing the reference sample with 1% w/w of chemical grade MnO2, CuO, V2O5, PbO, CdO, ZrO2, Li2O, MoO3, Co2O3, NiO, WO3, ZnO, Nb2O5, CrO3, Ta2O5, TiO2, BaO2 and H3BO3 were studied. The effect on the reactivity is evaluated on the basis of the free lime content in samples sintered at 1200 and 1450 °C. At 1200 °C, the reactivity of the mixture is greatly increased in the presence of Cu and Li oxides. Based on their effect at 1450 °C, the added elements can be divided into three groups. W, Ta, Cu, Ti and Mo show the most positive effect, decreasing the free CaO (fCaO) content by 30-60%, compared with the pure sample. Cr and B cause an increase of fCaO content, while the rest of the elements exhibit a marginal positive effect. According to their volatility at 1450 °C, the added compounds can be subdivided into three groups of low (Ti4+, Cu2+, Mo6+, W+6, V5+, Zn2+, Zr4+), moderate (Cr6+, Co3+, Ni2+, Mn4+) and high volatility (Cd2+, Pb2+). All burned samples, analyzed by means of X-ray diffraction, have a final mineralogical composition, which corresponds to the structure of a typical clinker.  相似文献   

9.
New data relevant to calcium silicate hydrate (C-S-H) gels prepared at room temperature have been obtained over a time period of up to 112 weeks. X-ray diffraction (XRD) indicates equilibrium was attained after 64 weeks. Coupled with fourier transform infrared (FT-IR) spectroscopy, a phase change in C-S-H gel at Ca/Si ≈ 1.0 was identified and the occurrence of portlandite as a distinct phase for Ca/Si > 1.64. The incongruent dissolution of C-S-H gel was modeled as a non-ideal solid solution aqueous solution (SSAS) between the end-member components CaH2SiO4 (CSH) and Ca(OH)2 (CH) using equations defining the solidus and solutus curves on a Lippmann phase diagram. Despite being semi-empirical, the model provides a reasonable and consistent fit to the solubility data and can therefore be used to describe the incongruent dissolution of C-S-H gels with compositions Ca/Si ≥ 1.0.  相似文献   

10.
The hydration of a tricalcium silicate paste at ambient temperature and at 200 °C under high pressure (up to 1000 bar) has been studied. Two high pressure cells have been used, one allows in-situ electrical conductivity measurements during hydration under high pressure. The hydration products were characterized by thermal analysis, X-ray diffraction and 29Si NMR measurements. The pressure has a large kinetic effect on the hydration of a C3S paste at room temperature. The pressure was seen to affect drastically the hydration of a C3S paste at 200 °C and this study evidences the competition between the different high temperature phases during the hydration.  相似文献   

11.
Formation and stability of hydrogarnet and Al-substituted tobermorite were examined at 175 °C temperature in saturated steam environment processing CaO-quartz and CaO-amorphous SiO2 suspensions. A large quantity of Al2O3 was added to the starting mixtures [molar ratio A/(S+A)=0.10, duration of hydrothermal synthesis—from 0 to 24 h]. It was determined that hydrogarnets always tend to form more rapidly than 1.13 nm tobermorite. However, later, with extension of synthesis duration, they start to fracture and their quantity reduces almost in half during 24 h. CaO is present in the further reaction with SiO2 forming hydrated calcium silicates, and released Al3+ ions are inserted into Al-substituted tobermorite crystal lattice. Using amorphous SiO2·nH2O as SiO2 component, starting raw materials react considerably quicker—the total Ca(OH)2 is joined already while increasing the temperature up to 175 °C. Meanwhile, in the mixtures with quartz when their composition is described by the molar ratio C/(S+A)=1.0, traces of Ca(OH)2 are found even after 24-h isothermal treatment at 175 °C temperature. Moreover, it depends on SiO2 modification the hydrogarnets of what type are to be formed. Si-free hydrogrossular forms in the mixtures with quartz and katoite in the mixtures with SiO2·nH2O. Si4+ ions are inserted into the crystal lattice of the latter compound while the first one remains undisturbed. This is presumably related to the lower solubility of the quartz. It was also noticed that an isomorphic Si4+ ions substitution with Al3+ ions in the hydrated calcium silicate lattice is considerably quicker when an amorphous SiO2 is used as SiO2 component instead of quartz.  相似文献   

12.
In this study, the decomposition conditions of limestone particles (0.25-0.50 mm) for CO2 capture in a steam dilution atmosphere (20-100% steam in CO2) were investigated by using a continuously operating fluidized bed reactor. The results show that the decomposition conversion of limestone increased with the steam dilution percentage in the CO2 supply gas. At a bed temperature of 920 °C, the conversions were 72% without steam dilution and 98% with 60% steam dilution. The conversion was 99% with 100% steam dilution at 850 °C of the bed temperature. Steam dilution can decrease not only the decomposition temperature of limestone, but also the residence time required for nearly complete decomposition of CaCO3. The hydration and carbonation reactivities of the CaO produced were also tested and the results show that both the reactivities increased with the steam dilution percentage for decomposing limestone.  相似文献   

13.
RuO2·xH2O/NiO composites having RuO2 contents in the range 0-100 wt.% have been prepared by a co-precipitation method. Structural, microstructural and textural transformations after heating the as-prepared composites at 200 and 600 °C have been followed by X-ray diffraction, scanning electron microscopy (SEM) and nitrogen adsorption/desorption isotherms. At 200 °C the composites are made of micrometric particles in which nanometric crystallites of the two oxides are aggregated. The composites show microporosity (0.02-0.10 cm3/g), mesoporosity (0.07-0.12 cm3/g) and relatively high specific surface area (62-309 m2/g). At 600 °C the composites are fully dehydrated and RuO2 has crystallized and segregated. Microporosity and mesoporosity as well as specific surface area are strongly decreased. Specific capacitance and specific surface area of the composites heated at 200 and 600 °C have been measured and discussed on the basis of the RuO2 content. For comparison the specific capacitance and specific surface area of mixtures of NiO and RuO2·xH2O (or RuO2) have been taken as references. The higher specific capacitance of the 200 °C-heated composites compared to the 600 °C-heated ones is due to the higher specific surface area of the former and the higher pseudocapacitance of RuO2·xH2O compared to RuO2. The discussion reported in this work can be applied to other composites such as RuO2·xH2O/carbon and RuO2·xH2O/other oxides.  相似文献   

14.
In this work, bare and Ta-substituted Nb2O5 nanofibers are prepared by electrospinning followed by sintering at temperatures in the 800–1100 °C range for 1 h in air. Obtained bare and Ta-substituted Nb2O5 polymorphs are characterized by X-ray diffraction, scanning electron microscopy, density measurement, and Brunauer, Emmett and Teller surface area. Electrochemical properties are evaluated by cyclic voltammetry and galvanostatic techniques. Cycling performance of Nb2O5 structures prepared at temperature 800 °C, 900 °C, and 1100 °C shows following discharge capacity at the end of 10th cycle: 123, 140, and 164 (±3) mAh g−1, respectively, in the voltage range 1.2–3.0 V and at current rate of 150 mA g−1 (1.5 C rate). Heat treated composite electrode based on M-Nb2O5 (1100 °C) in argon atmosphere at 220 °C, shows an improved discharge capacity of 192 (±3) mAh g−1 at the end of 10th cycle. The discharge capacity of Ta-substituted Nb2O5 prepared at 900 °C and 1100 °C showed a reversible capacity of 150, 202 (±3) mAh g−1, respectively, in the voltage range 1.2–3.0 V and at current rate of 150 mA g−1. Anodic electrochemical properties of M-Nb2O5 deliver a reversible capacity of 382 (±5) mAh g−1 at the end of 25th cycle and Ta-substituted Nb2O5 prepared at 900 °C, 1000 °C and 1100 °C shows a reversible capacity of 205, 130 and 200 (±3) mAh g−1 (at 25th cycle) in the range, 0.005–2.6 V, at current rate of 100 mA g−1.  相似文献   

15.
Experimental work has been carried out on the mixed reforming reaction, i.e., simultaneous steam and CO2 reforming of methane under a wide range of feed compositions and four different reaction temperatures from 700 °C to 850 °C using a commercial steam reforming catalyst. The experiments were conducted for a CO2/CH4 ratio from 0 to 2 and a steam to methane ratio from 3 to 5. The effect of CO2/CH4 ratio on the exit H2/CO ratio and the conversions of the reactants indicate that the dry reforming reaction is dominant under increased carbon dioxide in the feed. Steam reforming of typical steam hydrogasification product gas consisting of CO, H2 and CO2 in addition to steam and methane has also been investigated. The H2/CO ratio of the product synthesis gas varies from 4.3 to 3.7 and from 4.8 to 4.1 depending on the feed composition and reaction temperature. The CO/CO2 ratios of the synthesis gas varied from 1.9 to 2.9 and 2.0 to 3.3. The results are compared with simulation results obtained through the Aspen Plus process simulation tool. The results demonstrate that a coupled steam hydrogasification and reforming process can generate a synthesis gas with a flexible H2/CO ratio from carbon-containing feedstocks.  相似文献   

16.
About 50-75% of oxygen captured during decomposition of N2O at 200 °C over Fe-FER (Fe/Al 0.03-0.6) was exchanged by 18O at room temperature. Complete desorption of captured oxygen containing mostly 16O isotope was reached at higher temperature. The 18O deficiency was rationalized by assuming labilization of the framework oxygen in Fe-FER.  相似文献   

17.
The performance of different Cu/CeO2/Al2O3 catalysts of varying compositions is investigated for the oxidative steam reforming of methanol (OSRM) in order to produce the hydrogen selectively for polymer electrolyte membrane (PEM) fuel cell applications. All the catalysts were prepared by co-precipitation method and characterized for their surface area, pore volume and oxidation–reduction behavior. The effect of various operating parameters studied are as follows: reaction temperature (200–300 °C), contact-time (W/F = 3–15 kgcat s mol− 1) and oxygen to methanol (O/M) molar ratio (0–0.5). The steam to methanol (S/M) molar ratio = 1.5 and pressure = 1 atm were kept constant. Among all the catalysts studied, catalyst Cu–Ce–Al:30–20–50 exhibited 100% methanol conversion and 179 mmol s− 1 kgcat− 1 hydrogen production rate at 280 °C with carbon monoxide formation as low as 0.19%. The high catalytic activity and hydrogen selectivity shown by ceria promoted Cu/Al2O3 catalysts is attributed to the improved specific surface area, dispersion and reducibility of copper which were confirmed by characterizing the catalysts through temperature programmed reduction (TPR), CO chemisorption, X-ray diffraction (XRD) and N2 adsorption–desorption studies. Reaction parameters were optimized in order to produce hydrogen with carbon monoxide formation as low as possible. The time-on-stream stability test showed that the Cu/CeO2/Al2O3 catalysts were quite stable.  相似文献   

18.
The long-term stability of Ta0.16Y0.16Zr0.68O2 (TaYSZ) has been studied for possible application in thermal barrier coatings. X-ray diffraction was used for the characterization of the phase stability from 1100 to 1500 °C. Long-term stability of TaYSZ in presence of 7YSZ at 1250 °C has also been checked. At 1500 °C, TaYSZ remains as a single tetragonal phase. TaYSZ, however, when treated at 1250 °C for 600 h decomposes to m-ZrO2 and contains a minor YTaO4 phase and t-TaYSZ. In the presence of 7YSZ, decomposition of TaYSZ was suppressed. Decomposition of TaYSZ follows a different mechanism when treated in air and under vacuum. TaYSZ once pretreated at 1500 °C does not show any decomposition when treated at 1250 °C for 600 h, though weak reflections of Y3TaO7 are seen in the X-ray diffraction pattern. The onset of sintering and the coefficient of thermal expansion (CTE) of TaYSZ have been found to be ∼1200 °C and 11.24 × 10−6 K−1, respectively.  相似文献   

19.
Zhen Shu Liu 《Fuel》2005,84(1):5-11
This work evaluates both the removal efficiencies of HCl and SO2 at different points in a spray dryer using Ca(OH)2 as the absorbent. The operating conditions were specified in terms of the temperature of the flue gas (200-300 °C), the HCl concentration (120-1000 ppm), the SO2 concentration (150-500 ppm) and the amount of CaCl2 added (10-30 wt.%).The experimental results showed that the SO2 removal efficiencies were higher in the presence of HCl (120-500 ppm) than in the absence of HCl at 250 °C and 20% relative humidity (RH). However, the removal efficiency of SO2 decreased as the HCl concentration increased. The removal efficiency of SO2 also increased with the amount of CaCl2 in the spray dryer.  相似文献   

20.
Porous 7Na2O-23B2O3-70SiO2 glass was successfully fabricated by acid leaching treatment and phase-separation. The 2 mol/l hydrochloric acid (HCl) solution treatment was used for 24 h. Thermal analysis and X-ray diffraction were used to identify the temperature range of heat-treatment. The average pore size and the pore volume were investigated by a nitrogen adsorption instrument, and SEM was used to characterize the appearance of the porous glass. The results show that the average size of pores changed from 3.75 nm to 3.03 nm when heat treated at 640-680 °C for 6 h. In addition, when heat treated at 640 °C for 6-24 h, the pore size fell from 3.75 nm to 3.66 nm. The surface area and pore volume become larger with the increase in both temperature and heat treatment time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号