首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When concrete is exposed to the elements, its underlying microstructure can be attacked by a variety of aggressive agents; for example, rainwater and groundwater. The knowledge of concrete resistance to long term water aggression is necessary for predictions of their performance in different environments. This study aims to analyse the effects of leaching on the microstructure of Portland cement binders. Leaching of cement pastes was performed by an accelerated extraction leaching test that produces significant degradation and helps to achieve equilibrium or near-equilibrium conditions between the leachant medium and cement paste. FTIR spectroscopy, TG-DTA thermal analysis, low temperature nitrogen gas sorption, and geochemical modelling were used to characterize the microstructural changes produced in cement pastes at different equilibrium pHs reached during the leaching process.  相似文献   

2.
Portland cement clinkers from two production units were investigated in order to determine the effects of mineralisation on alite and belite; Plant 1: ordinary clinker (P1) and clinker mineralised with CaF2+CaSO4 (P1m); Plant 2: ordinary clinker (P2) and two clinkers mineralised with CaF2+CaSO4 (P2m, P2m′).The polymorphism of alite was studied using synchrotron X-ray powder diffraction (XRD), wavelength 1.5227 Å, and electron diffraction (ED) in a transmission electron microscope. The substitutions of minor elements in alite and belite were determined using electron microprobe analysis. Clinkers P1 and P1m both contained apparent rhombohedral alite (XRD) with an incommensurately modulated structure (ED), while clinkers P2, P2m, and P2m′ all contained monoclinic alite (XRD). The addition of mineralisers in the process caused increased content of fluoride in alite and increased substitution of Si(4+) by Al(3+) and S(6+) in both calcium silicates. The latter effect was most pronounced in clinker P1m due to its high molar SO3 to alkali oxide ratio (R=2.18).The improved hydraulic activity of P1m compared to P1 was caused by substitutions rather than a change in symmetry. The decreased hydraulic activity of P2m and P2m′ compared to P2 was explained by the high levels of fluorine, which had a retarding effect on the hydration.  相似文献   

3.
Three basic elements (cement, water and admixture) usually make up injectable cement grouts used for prestressed cable coating, repair and consolidation of masonry, soil grouting, etc. The present study was divided into two parts. First, in order to characterize rheologically fresh cement paste with water/cement ratios (W/C) varying between 0.35 and 1, an experimental study was carried out and has revealed that the cement past behaves like a shear-thinning material, whatever is the W/C ratio. Second, to study the time evolution of their density, a γ-densitometer bench was used. Relying on the water content and the density measured, we demonstrate that the computation of the degree of hydration of cement is possible.The cement/geotechnics interdisciplinary approach proposed here has made it possible to obtain a large range of original results useful to improve our understanding of the sedimentation processes for cement pastes with different W/C ratios.  相似文献   

4.
An alkali-activated cement (AAC) based on natural SiO2-containing materials—grounded porcellanite (Pr) and highly dispersed pure quartz sand—was examined. Sodium hydroxide was used as an alkali activator. The pressed specimens were prepared and were cured in an autoclave at a pressure of 1.6 MPa and a temperature of 205 °C. It was shown that the strength of cement as well as compound and the microstructure of its hydration products depend on the cement composition. It was distinguished that autoclave-cured cementing matter comprises secondary quartz and the mass of sodium hydrated silicates along with the initial Pr crystal phases. After a 2-year storage under water, 15% Na2SO4, and Dead Sea water, the strength of specimens decreased by 17.5-20%. Control specimens, prepared with Portland cement and immersed in a 15% Na2SO4 solution for 2 weeks, were broken up completely. Positive results of long-term durable tests suggest that an AAC based on natural raw material would be stable in other salt solutions.  相似文献   

5.
The rheology of cementitious system containing superplasticizer is the consequence of a physical process due to the electrostatic repulsion between particles, but also of a chemical process linked to the nature of the phases that are formed. Ettringite crystallization play as a key role in this matter and the nature of the sulfate phase added to control cement setting is as important as its dosage. Alkali sulfates, which provide only SO42− ions, do not promote the formation of ettringite for which the presence of large amounts of Ca2+ is necessary. The adsorption of superplasticizer molecules on hydrated cement grains slows down the dissolution rates of the constituents and modifies the nature of the compounds formed. It could result in a modification of the ettringite morphology.  相似文献   

6.
The trace element content of clinkers (and possibly of cements) can be used for the qualitative identification (i.e. manufacturing works). Several hundred clinker sorts have been analysed (by replicated quarterly samples, collected from all Hungarian cement factories, as well as from factories in eight foreign countries) to determine their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. The first six elements come from the main raw materials and are of dactylogrammatic value, while the last two elements mainly come from fuel (used tires and heavy fuel oil, respectively) and cannot be used for identification. In this paper, a graphical method is presented to facilitate the visualisation of the trace element content.  相似文献   

7.
The first paper in this two-part series [Cem. Concr. Res. 32 (2002) 915] summarized the experimental results from a comprehensive research study on sulfate attack. The current paper utilizes these results to develop models for the mechanism of attack resulting from sodium and magnesium sulfate solutions. Implications of changing the binder constituents or the experimental variables, such as concentration and temperature of the solution on the proposed mechanism, are also discussed. The potential of these mechanistic models for use in service life prediction models has also been identified.According to the proposed mechanism, the attack due to sodium sulfate solution progresses in stages. The expansion of an outer skin of the specimen leads to the formation of cracks in the interior region, which is chemically unaltered. With continued immersion, the surface skin disintegrates, and the sulfate solution is able to react with the hydration products in the cracked interior zone leading to the deposition of attack products in this zone. Now, this zone becomes the expanding zone, leading to further cracking of the interior of the mortar.In the case of magnesium sulfate solution, a layer of brucite (magnesium hydroxide) forms on the surface of the mortar specimen. The penetration of the sulfate solution then occurs by diffusion across this surface layer. As the attack progresses, the formation of attack products such as gypsum and ettringite in the paste under the surface leads to expansion and strength loss. The expansion also causes cracking in the surface brucite layer, and this leaves the mortar susceptible to direct attack by the magnesium sulfate solution. Conditions favorable for the decalcification of calcium silicate hydrate (C-S-H) are thus created, and the ultimate destruction of the mortar occurs as a result of the conversion of C-S-H to the noncementitious magnesium silicate hydrate (M-S-H).  相似文献   

8.
This paper reports the results of an investigation on the effects of sodium and magnesium sulfate solutions on expansion and microstructure of different types of Portland cement mortars. The effects of using various sulfate concentrations and of using different temperatures are also reported. The results suggest that the expansion of mortars in sodium sulfate solution follows a two-stage process. In the initial stage, Stage 1, there is little expansion. This is followed by a sudden and rapid increase in the expansion in Stage 2. Microstructural studies suggest that the onset of expansion in Stage 2 corresponds to the appearance of cracks in the chemically unaltered interior of the mortar. Beyond this point, the expansion proceeds at an almost constant rate until the complete deterioration of the mortar specimen. In the case of magnesium sulfate attack, expansion occurs at a continually increasing rate. Microstructural studies suggest that a layer of brucite (magnesium hydroxide) on the surface forms almost immediately after the introduction of the specimens into the solution. The attack is then governed by the steady diffusion of sulfate ions across the brucite surface barrier. The ultimate failure of the specimen occurs as a result of the decalcification of the calcium silicate hydrate (C-S-H), and its conversion to magnesium silicate hydrate (M-S-H), after prolonged exposure to the solution. The effects of using various admixtures, and of changing the experimental variables such as the temperature and concentration of the solution, are also summarized in this paper. Models for the mechanism of the attack resulting from sodium and magnesium sulfate solutions will be presented in Part 2.  相似文献   

9.
In this paper, a three-dimensional finite element model for the analysis of non-structural cracks occurring in reinforced concrete (RC) walls is introduced. The numerical model could take into account both time-dependent temperature variations due to hydration heat and non-uniform moisture distribution during drying, and the coupling effect between the heat transfer and the moisture diffusion. Calculation of the temperature and internal relative humidity variations of RC walls is followed by determination of stresses due to thermal gradients, differential drying shrinkage, and average drying shrinkage. The mechanical properties of early age concrete, determined from numerous experimental studies, are taken into consideration to improve the accuracy of the numerical results, and a discrete steel element derived using the equivalent nodal force concept is also used to simulate reinforcing steels embedded in a concrete matrix. The validity of the proposed procedure is verified by comparing the measured experimental data with the analytical results for RC walls.  相似文献   

10.
This work falls within the scope of the general problem of the assessment of concretes manufactured from waste materials. The main objective is to study the long-term evolution of these materials during leaching using the cellular automata-based hydration model developed at the National Institute of Standards and Technology (NIST). The work is based on the analysis of mortars and cement pastes containing experimental waste: Municipal Solid Waste Incineration fly ash (MSWI fly ash). After having determined the mineralogical composition of the MSWI fly ash and its interactions with cement during hydration, presented previously as Part I, the phases comprising the fly ash have been incorporated into the hydration model. The increase in porosity of cement pastes containing MSWI fly ash during leaching has then been simulated. Finally, a simplified leaching model has been developed to study the influence of the changes in microstructure on the release of calcium and sodium.  相似文献   

11.
A broad experimental study has been performed, from the end of mixing up to 2 years, on a set of plain cement pastes prepared with the same type I ordinary portland cement (OPC) and various water-to-cement ratios (W/C), and cured at various constant temperatures. Several parameters have been measured on the hydrating materials, such as chemical shrinkage, volumetric and one-dimensional autogenous deformations, degree of hydration of the cement, Ca(OH)2 content and Vicat setting times. Drying shrinkage has also been measured on the mature materials. In this part II of the paper, the effects of W/C within the range 0.25-0.60 have in particular been analysed in relation to the microstructural characteristics of the materials. This micro-macro analysis has highlighted a W/C threshold value (located around 0.40) both at the macro-level (on autogenous, but also on drying deformations and durability-related properties) and at the micro-level (characteristics of the hydration products, MIP porosity and pore size distribution, etc.).In addition, volumetric and one-dimensional autogenous shrinkage deformations have been compared in the case of W/C=0.25 and T=20 °C. Finally, a critical twofold (chemical and structural) effect of calcium hydroxide has been found. When significant structural effects, generated by the formation and the growth of large-size Ca(OH)2 crystals, take place, swelling can become prominent, as observed for one-dimensional autogenous deformations in the case of medium and high W/C, and deviations are recorded on linear relationships.  相似文献   

12.
The physical properties, pore structure, hydration process and hydration products of mercury-doped (Hg-doped) alkali-activated slag (AAS) matrixes have been evaluated by examination of physical properties, pore structure analysis and XRD, TG-DTG, FTIR and TCLP methods. Low concentrations of Hg2+ ions had little effect on the compressive strength, pore structure and degree of hydration of AAS matrixes. The addition of 2% Hg2+ ions into the AAS matrix brought out an evident retardation on early hydration and reduction of early compressive strength, but no negative effects were noticed after hydration for 28 days. The results also show that up to 2% of Hg2+ ions can be effectively immobilized in the AAS matrix, with the leaching meeting the TCLP mercury limit. Two mechanisms, physical encapsulation and chemical fixation, are assumed to be responsible for the immobilization of mercury in the AAS matrix.  相似文献   

13.
The hydration process of cement pastes is of great importance to the physicomechanical properties of the hardened material. Thus, substances that regulate the setting of cement, such as natural anhydrite, have attracted significant scientific interest during the past years. This paper briefly describes the results of utilization of natural anhydrite in cement pastes of CEM-I and CEM-II types. The aim of the study has been to inquire the extent of natural gypsum replacement by natural anhydrite. The result of the hydration process has been expressed by the setting time and the compressive strength development, with respect to the SO3−2 content of each mixture. The experimental data conclude that natural anhydrite can be a very efficient retarder of the setting of cement, with no significant change in the physicomechanical properties of the hardened pastes.  相似文献   

14.
Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis.The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.  相似文献   

15.
The compressive strength, setting time, pore structure and hydration product of Zn-doped, alkali-activated slag (AAS) matrix have been investigated by examination of physical properties, micropore analysis, thermal analysis, FTIR, SEM and TCLP methods. The results show that the effects of Zn2+ on the AAS matrix depend on Zn2+ ion concentrations. At low Zn2+ ion concentrations, little negative influences on the compressive strength, setting time and distribution of pore structure were observed. Moreover, low concentrations of Zn2+ ion could be effectively immobilized in the AAS matrix. For 2% Zn-doped AAS matrix, the hydration of AAS paste was greatly retarded and leaching from this matrix was higher than TCLP zinc limit even at 28 days. Based on the analyses of hydration products, the chemical fixation mechanisms are considered responsible for the immobilization of Zn2+ ions in the AAS matrix.  相似文献   

16.
17.
This paper reviews the literature devoted to structural investigations, with a special concern to the various notations used by different authors. A unified analysis of the known T1, M1, M3 and R polymorphs is proposed. The superstructure relations between the various unit cells are discussed, together with the evidence of common 1D and 2D structural elements in all these polymorphs. These structural elements are related to the observed properties.  相似文献   

18.
Alkali activation of ground granulated blast furnace slag (GGBFS) with sodium silicate gave clinker-free binders, with high strength and early strength development, although set times were short and somewhat variable. Isothermal calorimetry detected three heat evolution peaks (wetting, gelation of activator and bulk reaction of slag). X-ray diffraction (XRD) showed no crystalline products. Hydration was investigated by scanning electron microscopy (SEM; with quantitative image analysis) and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR). From early age, a uniform gel filled the initially water-filled space, and gradually densified as reaction proceeded. Microanalysis of outer product (OP) showed an Al-substituted C-S-H gel phase of widely variable (0.5-1.0) Ca/Si ratio. NMR showed long-chain substituted C-S-H with Al/Si ratio rising to 0.19 at 1 year, and also cross-linked material, consistent with a Ca- or Al-modified silica gel. Inner product (IP) regions around slag grains probably also contained hydrotalcite. Activation with KOH gave more rapid reaction of slag than for silicate activation, a less homogeneous microstructure, and lower strengths. The hydrates contained a substituted C-S-H gel of low Ca/Si ratio probably mixed with hydrotalcite, and occasional higher Al regions in the OP regions.  相似文献   

19.
The trace element content of clinkers (and possibly of cements) can be used for the qualitative identification (i.e., manufacturing factory). This paper proposes a fuzzy classifier for the discrimination of clinkers produced in different factories based on their Mg, Sr, Ba, Mn, Ti, Zr, Zn and V content. The fuzzy classifier is identified by unsupervised fuzzy clustering. The most relevant trace elements were selected based on the obtained clusters by the modified version of the Fisher interclass separability method. The classification of a country from the European Community and South African clinkers is used as an illustrative example. The results show that the proposed method is useful to identify compact classifiers that are able to determine the origin of the clinker; the obtained classifier is easy to use and interpret for engineers and researchers, even when they are not familiar with the concept of fuzzy logic.  相似文献   

20.
The cathode catalyst layer (CL) in direct methanol fuel cells (DMFCs) has been optimized through a balance of ionomer and porosity distributions, both playing important roles in affecting proton conduction and oxygen transport through a thick CL of DMFC. The effects of fabrication procedure, ionomer content, and Pt distribution on the microstructure and performance of a cathode CL under low air flowrate are investigated. Electrochemical methods, including electrochemical impedance, cyclic votammetry and polarization curves, are used in conjunction with surface morphology characterization to correlate electrochemical characteristics with CL microstructure. CLs in the form of catalyst-coated membrane (CCM) have higher cell open circuit voltages (OCVs) and higher limiting current density; while catalyzed-diffusion-media (CDM) CLs display better performance in the moderate current density region. The CL with a composite structure, consisting both CCM and CDM, shows better performance in both kinetic and mass-transport limitation region, due to a suitable ionomer distribution across the CL. This composite cathode is further evaluated in a full DMFC and the cathode performance loss due to methanol crossover is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号