首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
凝灰岩是经过火山喷出散落在地面,经过压结和水化胶结固化而形成的一种火山灰碎屑岩,具有一定的火山灰活性。本文研究养护温度对凝灰岩基胶凝材料力学性能的影响,并借助FTIR、TG、SEM和MIP等对凝灰岩基胶凝材料水化产物的微观结构进行分析。结果表明,提高养护温度对凝灰岩基胶凝材料的力学性能具有一定的增强作用,提高养护温度不仅能提高早期强度,还可以提高后期强度,凝灰岩基胶凝材料的最佳养护温度为50 ℃。提高养护温度后凝灰岩基胶凝材料中没有生成新的水化产物,AFt和C-S-H等水化产物含量增加,Ca(OH)2的含量减少。提高养护温度有利于增加凝胶孔和过渡孔占比,细化孔径结构,降低孔隙率,提高基体结构的致密度。  相似文献   

2.
水泥中掺入大量矿物掺合料易造成其早期强度低、施工周期长等问题。本文研究了C-S-H晶核对含矿物掺合料的复合胶凝材料体系水化性能的影响规律;通过热力学计算阐述了C-S-H晶核降低水化产物成核势垒的机理,并通过离子溶出与沉积探讨大掺量矿物掺合料胶凝体系水化机理。结果表明:矿物掺合料复合胶凝材料体系水化能力较弱,这是由于Ca2+溶出受到制约,C3S的水化反应缓慢;当加入晶核后,水泥中硅酸盐相溶解-结晶能力得到大幅提升,使得矿物掺合料水泥体系的水化反应活性接近纯水泥体系。研究表明,C-S-H晶核可解决大掺量矿物掺合料胶凝体系所带来的水化能力严重不足问题。  相似文献   

3.
硅酸三钙(C3S)体系及铝酸三钙-二水石膏(C3A-CH2) 体系作为主要的硅酸盐水泥矿物相,对水泥新拌阶段及后续性能发展阶段有尤为重要的影响。而水泥在诱导期内的水化进程很大程度上决定了其后续性能的发展。鉴于此,本文回顾了水泥水化的热力学原理,重点综述了目前关于水泥水化诱导期开始及结束时作为主要矿物体系的C3S体系和C3A-CH2体系的水化进程及机理的研究进展,以及不同矿物体系诱导期的成因。但限于目前的研究手段,对于水泥水化诱导期内各种矿物体系的相互作用和相互影响仍未完全厘清,还需要进一步的探索。  相似文献   

4.
This paper reports the results of microstructural analysis of plain and steel-reinforced mortar specimens deteriorated by chlorides that were admixed or introduced through chloride ingress. The electrical properties of mortars were measured and their microstructural characteristics were investigated using quantitative image analysis techniques. The influence of chloride ions on mortar microstructure are discussed in terms of hydration and corrosion products. The research reveals that chlorides will induce changes in the chemical compositions and morphology of cement hydration products, and thereby exert influence on ion transport in the mortar specimens. The electrical properties of plain and reinforced mortars are not only related to the presence of chlorides in the pore system but are also influenced by the pore structure characteristics. The cementitious matrix undergoes certain alterations in conditions of the combined effects of: cement hydration, chloride ion transport and chemical binding mechanisms. To this end the pore structure characteristics appeared to be a significantly contributing factor in the process of chloride-induced corrosion in reinforced cement-based materials.  相似文献   

5.
Considering the increasing use of limestone cement manufacture, the present paper tends to characterize limestone behavior in the presence of Cr(VI). The research reported herein provides information regarding the effect of Cr(VI) from industrial wastes in the limestone cement hydration.The cementitious materials were ordinary Portland cement, as reference, and limestone blended cement.The hydration and physicomechanical properties of cementitious materials and the influence of chromium at an early age were studied with X-ray diffraction (XRD), infrared spectroscopy (FTIR), conductimetric and mechanical tests. Portland cement pastes with the addition of Cr(VI) were examined and leaching behavior with respect to water and acid solution were investigated.This study indicates that Cr(VI) modifies the rate and the components obtained during the cement hydration.  相似文献   

6.
It is well known from experiments that the uniaxial compressive strength of cementitious materials depends linearly on the degree of hydration, once a critical hydration degree has been surpassed. It is less known about the microstructural material characteristics which drive this dependence, nor about the nature of the hydration degree–strength relationship before the aforementioned critical hydration degree is reached. In order to elucidate the latter issues, we here present a micromechanical explanation for the hydration degree–strength relationships of cement pastes and mortars covering a large range of compositions: Therefore, we envision, at a scale of fifteen to twenty microns, a hydrate foam (comprising spherical water and air phases, as well as needle-shaped hydrate phases oriented isotropically in all space directions), which, at a higher scale of several hundred microns, acts as a contiguous matrix in which cement grains are embedded as spherical clinker inclusions. Mortar is represented as a contiguous cement paste matrix with spherical sand grain inclusions. Failure of the most unfavorably stressed hydrate phase is associated with overall (quasi-brittle) failure of cement paste or mortar. After careful experimental validation, our modeling approach strongly suggests that it is the mixture- and hydration degree-dependent load transfer of overall, material sample-related, uniaxial compressive stress states down to deviatoric stress peaks within the hydrate phases triggering local failure, which determines the first nonlinear, and then linear dependence of quasi-brittle strength of cementitious materials on the degree of hydration.  相似文献   

7.
利用X射线衍射、扫描电镜及力学性能测试等手段研究了纳米SiO2对玻璃粉水泥体系水化硬化的影响,结果表明:纳米SiO2促进了水泥早期溶解,提高了复合体系碱度,有利于玻璃粉内部高能键(Si-O,Al-O)断裂,从而提高复合体系中玻璃粉早期水化程度;纳米SiO2对材料凝结硬化的促进作用较大程度上缓解了掺玻璃粉体系早期性能发展不足的缺陷;纳米SiO2的微集料效应,改善了玻璃粉水泥浆的微观结构,使得硬化浆体更为密实;纳米SiO2的促凝作用可显著缩短复合体系凝结时间,大幅度提高其早期强度,但掺纳米SiO2的复合胶凝材料强度存在一个极值,而5%纳米SiO2为其最佳掺入量.  相似文献   

8.
低水胶比水泥基材料的孔隙率低,力学性能、耐久性能和抗冲击性能优异。然而,低水胶比水泥基材料中的自由水含量低且可供水化产物沉淀的空间有限,限制了水泥颗粒的水化反应,导致其内部存在大量未反应的胶凝材料。本文阐述了水泥的后续水化过程及机理,综述了后续水化对低水胶比水泥基材料微观结构、体积稳定性和强度等方面影响的研究进展。最后对目前低水胶比水泥基材料后续水化研究中存在的一些问题进行了总结和展望,旨在为低水胶比水泥基材料的长期稳定性研究和应用提供理论依据。  相似文献   

9.
钢渣和水泥具有相似的矿物组成,可以作为一种潜在的胶凝材料,然而钢渣掺量较高时并不利于混凝土早期性能的发展。以钢渣质量分数为30%的钢渣水泥基胶凝材料为研究对象,探讨纳米SiO2对其早期性能的影响。主要通过测量流动度、凝结时间和抗压强度评估物理力学性能,并利用微量热分析、X射线衍射(XRD)、差热分析(DSC-TG)等方法对掺有纳米SiO2的钢渣水泥基胶凝材料的水化过程和水化产物进行分析。结果表明,当纳米SiO2掺入的质量分数为3%时,纳米SiO2可充分发挥火山灰活性,消耗大量Ca(OH)2,同时由于纳米SiO2颗粒的结晶成核作用和微集料填充作用,促进了钢渣和水泥的水化,水化初期的放热速率有所提高,从而提高钢渣水泥基胶凝材料的力学性能,28 d的抗压强度提高了14.0%。  相似文献   

10.
A new modelling platform, called µic has been developed to model the microstructural evolution of hydrating cement paste. The platform uses the vector approach and can be used for modelling particulate reactions including the hydration of many different cementitious systems involving millions of particles. In this paper, the ideas behind the development of µic and its main features are presented. The complexity of cement hydration and the gaps in our current understanding of cement played an important role in its design, so the platform has the primary objective of aiding, rather than replacing experiments. The platform is highly customisable as users can define materials, particles and reactions and choose or create external plugins to define models of microstructural development. The platform can be used to test the validity of hypotheses by easily formulating them as input and comparing simulations with experimental results. This paper presents the design of µic and examples that demonstrate the important features of its performance and design.  相似文献   

11.
陈伟  田健  郭东  彭自强  李秋  李博 《硅酸盐通报》2017,36(9):3094-3098
采用800℃脱水净浆模拟废弃混凝土中的胶质组分,与矿渣粉复合制成再生胶凝材料,以聚合氯化铝为添加剂,采用抗压强度测试、XRD分析、TG-DSC分析、扫描电镜等方法研究了再生胶凝材料的水化产物微结构和砂浆力学性能,对再生胶凝材料的水化过程及聚合氯化铝的作用机理进行了分析研究.结果表明掺加2%聚合氯化铝后,生成新的水化产物Friedel盐,胶凝材料水化产物数量增加,水泥浆与砂的粘结界面密实程度提高.  相似文献   

12.
The objective of this paper is to examine the evolution of rheological properties (e.g. yield stress) and to evaluate the use of these properties as a method to monitor structure formation and mechanical property development (i.e. setting) in cementitious materials. The authors utilize the stress growth technique to assess the development of a solid structure in cement pastes. An increase in the yield strength of the system due to cement hydration is identified to occur near the end of the dormant period as identified by chemical shrinkage. The transition from a fluid to a solid state and the development of elastic properties in the material are both noted to occur prior to the time of initial set as identified by the Vicat needle.  相似文献   

13.
对水泥、矿渣、粉煤灰分别粉磨复配制成复合胶凝材料,并与硅酸盐水泥进行水化热、水化性能、抗硫酸盐性能的对比研究.结果证实:复合胶凝材料的水化热较低,抗硫酸盐性能好,耐久性好:而且生产复合胶凝材料对降低水泥产品环境负荷具有良好的效果.  相似文献   

14.
The connectivity of the capillary porosity in cement-based materials impacts fluid-and-ion transport and thus material durability, the interpretation of experimental measurements such as chemical shrinkage, and the timing and duration of curing operations. While several methods have been used to assess the connectivity of the capillary pores, the interpretation of some experimental procedures can be complicated by the addition of certain chemical admixtures. This paper assesses capillary porosity depercolation in cement pastes using measurements of chemical shrinkage, low temperature calorimetry (LTC), and electrical impedance spectroscopy. The experimental results are analyzed to identify the time of capillary porosity depercolation. In addition, the factors that influence the interpretation of each technique are discussed. Experimental evidence suggests that capillary porosity depercolation, as defined by Powers, occurs after hydration has reduced the capillary porosity to around 20% in cement paste systems. The influence of capillary porosity depercolation on the transport properties is demonstrated in terms of a reduction in the electrical conductivity of the cementitious material. Special attention is paid to understand and interpret the influence of shrinkage-reducing admixtures (SRAs) on the freezing behavior of cementitious systems, particularly in regard to the inapplicability of using LTC to detect porosity depercolation in cement pastes containing such organic admixtures.  相似文献   

15.
The aim of this work is to describe a method based on a simple representation of the pore size distribution, which is able to predict hysteresis phenomena encountered in water sorption–desorption isotherms, particularly for cementitious materials. The hysteresis effect due to network constrictivity is taken into account in order to extend models of transfer in porous media to situations involving wetting–drying cycles. This is not achieved in earlier models and their performance in terms of prediction in such conditions is thus limited. The present modeling is based on an idealized pore size distribution. This has three modes, associated with C–S–H pores, medium capillary pores, and large capillary pores including consideration of cracks. The distribution is assessed from the chemical composition of the cement, the formulation of the material, the degree of hydration, the total water porosity and the intrinsic permeability.  相似文献   

16.
为探究水玻璃碱激发条件下冶炼铅渣和偏高岭土基复合胶凝材料的力学性能,采用单因素试验与正交试验,研究冶炼铅渣球磨时间、碱当量、碱激发剂模数和偏高岭土与冶炼铅渣的质量比对复合胶凝材料力学性能的影响。利用XRD、SEM和FTIR对复合胶凝材料的水化机理进行综合分析。结果表明:以上因素对复合胶凝材料28 d抗压强度的影响顺序依次为碱激发剂模数、冶炼铅渣球磨时间、碱当量、偏高岭土与冶炼铅渣的质量比;当冶炼铅渣球磨时间为4 h,碱当量为6%(质量分数),碱激发剂模数为1.4,偏高岭土与冶炼铅渣的质量比为3∶7时,复合胶凝材料28 d抗压强度达56.18 MPa;偏高岭土能够促进冶炼铅渣水化,产生更多凝胶和网状结构的硅铝酸盐类晶体填充基体孔隙,对胶凝体系后期强度发展起到促进作用。  相似文献   

17.
This paper investigates the effect of incorporating natural perlite powder (NPP) as a cement replacement on cementitious materials properties. For this purpose, cement pastes and mortars were prepared by replacing 5, 10, 15, and 20% of NPP by mass of the Portland cement. Physicomechanical performances of pastes and mortars based NPP were inspected using normal consistency, setting times, heat of hydration, and compressive strength testing. Resistance against sodium sulfate attack and sulfuric acid attack were also assessed to investigate the durability characteristics of different mortar mixes. Experimental results show that cement pastes and mortars incorporating up to 20% of NPP demonstrate satisfactory physical and mechanical properties with very comparable results to cementitious materials without NPP. In addition, improved sulfate and acid attacks resistance with increased NPP content were demonstrated. The X-ray diffraction analyses confirm that NPP can be considered as a good pozzolanic material that can be used satisfactorily as a mineral admixture in cement production.  相似文献   

18.
矿渣-粉煤灰混合材料水化产物、微观结构和性能   总被引:9,自引:0,他引:9  
张景富  丁虹  代奎  孙超 《硅酸盐学报》2007,35(5):633-637
用X射线衍射仪和扫描电子显微镜等对矿渣、粉煤灰混合材料的水化产物、硬化体微观结构及强度进行了检测和分析,确定了水化产物的组成及微观结构特点,揭示了矿渣粉煤灰材料的水化作用特点及强度特征.结果表明:矿渣在激发剂作用下使玻璃体首先发生表面水解,产生水化反应,进而引发粉煤灰的火山灰作用;混合材料的水化产物组分以水化硅酸钙凝胶为主,硬化体具有与油井水泥相类似的网络状微观结构;随养护时间增长,混合材料后期强度持续增加.  相似文献   

19.
It has been reported by previous studies that cracks in cementitious materials can be healed by further hydration of unhydrated cement particles. However, by now, neither the physicochemical process nor the potential of self-healing due to further hydration is completely understood. In this paper, in order to gain insight into self-healing by further hydration, healing behaviors due to further hydration were characterized and quantified. The mineralogy of healing products was qualitatively determined and the percentage of each mineral was specified. The formation of healing products as a function of time was quantified as well. Moreover, self-healing of microcracks was simulated by a reactive transport model. The calculated filling fraction by the healing products in microcracks was consistent with the experimental results. The healing process slowed down markedly after 300 h. In addition, in younger cement pastes, larger amounts of unhydrated cement lead to greater filling fraction of microcracks.  相似文献   

20.
混凝土化学组成的研究,对提升水泥混凝土强度有着十分重要的作用。主要研究了胶凝材料体系的硅酸盐水泥的化学组分与其相对掺量、还有配合比对混凝土强度的影响。综述了不同胶凝材料的化学组成与其反应机理,要特别说明的是C_3S和4CaO·Al_2O_3·Fe_2O_3的含量对强度的影响最大。水泥熟料发生的水化反应得到的水化产物,也对其产生了一定影响。通过优化胶凝材料不同的化学组分掺量,可以有效提高水泥混凝土强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号