首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z.J. Hu 《Carbon》2003,41(8):1501-1508
The chemistry of carbon deposition from methane as a function of methane pressure was studied at a temperature of 1100 °C and surface area/volume ratios of 0.8 and 3.2 mm−1 by analysis of both gaseous and condensing, i.e. aromatic reaction products. Conversion of methane as well as the yields of the hydrocarbons formed increase with increasing pressure. The surface area/volume ratio has a significant influence on the formation of aromatic hydrocarbons showing much higher yields at the lower ratio. This result, expected from preceding studies of deposition rates, confirms that a change of this ratio leads to a change of the deposition chemistry of carbon.  相似文献   

2.
A range of guaiacyl and syringyl lignin model phenols was treated with oxygen in 1M potassium hydroxide solution at 70°C. The reactions were monitored by high performance liquid chromatography and gas chromatography-mass spectrometry. The reactions of the phenols, which followed pseudo-first-order kinetics, were faster for syringyl than for guaiacyl phenols. For the various 4-substituted syringols the reactivities were in decreasing order CH2-syringyl > CHOH[sbnd]CH3 π C3H7 n > CH2OH > COOH > CHO > CO[sbnd]CH3. Reaction of 1-guaiacylpropane in 1M potassium hydroxide with oxygen gave products of oxidative scission of the aromatic ring and no dehydrodimer, whereas at pH 11.5 some dehydrodimer was among the reaction products. Vanillyl alcohol and syringyl alcohol yielded vanillin and syringaldehyde, respectively, as minor oxidation products. However, the reaction sites for the series of phenols were generally the aromatic rings rather than the side-chains. Oxidation of alkaline solutions of the phenols with oxygen at 1.0 MPa pressure and 110 and 150°C gave similar mixtures of acids and hydroxyacids.  相似文献   

3.
A very low surface area silica-silicon substrate has been used as a support for vanadium oxide and has been tested in the partial oxidation of methane. Use of a reactor with variable dead volume ahead of the bed of the catalyst allows determining the relevance of gas phase reactions in initiating methane conversion. Experimental evidence supports that at atmospheric pressure C1 oxygenates are essentially produced on the catalyst surface rather than in the gas phase. Comparison with a high surface area silica-supported vanadium oxide catalyst clearly highlights the double role of surface area in promoting catalytic activity, but also in promoting non-selective further oxidation of reaction products. It is shown that a reaction system combining dead volume upstream the bed of the catalyst and a very low surface area is very promising to activate methane conversion to C1 oxygenates and C2+ hydrocarbons at remarkable TOF number preventing further non-selective oxidation. In addition, production of C2+ hydrocarbons is observed at temperatures as low as 750 K.  相似文献   

4.
An improved model of C2H2 deposition for the growth of carbon nanotubes (CNT) in a horizontal tube reactor has been developed. This includes detailed gas-phase reactions of acetylene pyrolysis, and surface catalytic reactions for CNT growth. Based on this model, the mechanism of CNT growth has been studied by analyzing the change of the CNT growth rate for different growth conditions such as pressure, temperature, number of catalyst nanoparticles per unit area, and diameters of catalyst nanoparticles. The influence of gas-phase reactions and their products on CNT growth has also been evaluated. It is found that although C2H2 is the main contributor to the growth of CNTs, the contribution from the gas-phase products could not be ignored, especially at high temperature.  相似文献   

5.
J. Antes  Z. Hu  W. Zhang  K. J. Hüttinger   《Carbon》1999,37(12):2031
Carbon deposition from a methane–hydrogen mixture (pCH4=17.5 kPa, pH2=2.5 kPa) was studied at an ambient pressure of about 100 kPa and a temperature of 1100°C, using deposition arrangements with surface area/reactor volume ratios, [AS/VR], of 10, 20, 40 and 80 cm−1. Steady-state deposition rates and corresponding compositions of the gas phase as a function of residence were determined. The deposition rates in mol/h increase with increasing [AS/VR] ratio at all investigated residence times up to 1 s. However, surface-related deposition rates in mol/m2h decreased. As the same results have been obtained in a preceding study using pure methane at a partial pressure of 10 kPa, it has been confirmed that all the kinetics can be determined by changing the [AS/VR] ratio.  相似文献   

6.
The intrinsic compatibility of silicon carbide (SiC) and hydrogen (H2) at high temperatures (2000-2473 K) and pressure near one atmosphere was evaluated through a combination of thermodynamic calculations and hot hydrogen exposure testing. Thermodynamic calculations predict the decomposition of SiC in a hydrogen environment to form free silicon (Si) and free carbon (C). Free Si is predicted to vaporize from the surface as a volatile species, while free C may interact with H2 to form the hydrocarbons CH4 (T < 2100 K) or C2H2 (T > 2100 K). Coupons of high purity chemical vapor deposition (CVD) β-SiC were exposed to slowly flowing hydrogen at temperatures ranging between 2000 and 2473 K. SiC experienced active attack as the result of H2 exposure, exhibiting linear weight loss kinetics and an Arrhenius dependence of weight loss on exposure temperature. The linear volatilization constant was experimentally evaluated to correspond with an activation energy of 370 ± 18 kJ/mol. Due to the dependence of observed corrosion rates on gas velocity, corrosion of SiC in flowing H2 was determined to be governed by external mass transfer of volatile Si species through the boundary layer. Experimentally derived mass losses were in good agreement with mass losses predicted by a boundary layer limited gas diffusion model.  相似文献   

7.
Z.J. Hu  K.J. Hüttinger  B. Reznik 《Carbon》2003,41(4):749-758
The kinetics of carbon deposition from methane were studied over broad ranges of pressures, temperatures and reciprocal surface area/volume ratios. Based on these results, it was possible to distinguish between a growth and a nucleation mechanism of carbon deposition and to select conditions for the preparation of well-defined samples for texture analysis by transmission electron microscopy and selected area electron diffraction. Maximal texture degrees were obtained at medium or high values of the above parameters, but never at low values, at which carbon formation is based on the growth mechanism and dominated by small linear hydrocarbons. High-textured carbon resulting from the growth mechanism is concluded to be formed from a gas phase with an optimum ratio of aromatic to small linear hydrocarbons, which supports the earlier proposed particle-filler model of carbon formation. High-textured carbon may also be formed from a gas phase dominated by polycyclic aromatic hydrocarbons (nucleation mechanism) provided that the residence time is sufficiently long that fully condensed, planar polycyclic aromatic hydrocarbons can be formed in the gas phase.  相似文献   

8.
In many metal‐catalyzed conversion processes of hydrocarbons at atmospheric pressure a carbonaceous overlayer quickly builds up at the catalyst covering nearly the whole surface. However, the metal still remains catalytically active. Several models have been proposed over the years to explain the crucial role of the carbonaceous overlayer during the conversion of hydrocarbons. The model presented here contemplates adsorbate effects, which means that surface carbon modifies the dehydrogenation activity of Pt. A hydrocarbon reaction mechanism on platinum, including C1 and C2 species, is established. The mechanism is based on elementary reactions offering the opportunity of using the same mechanism for a wide range of applications. It is also applied to extended simulations of higher pressures and smaller flow velocities revealing increased C2H6 yields under these conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The steam reforming of liquefied petroleum gas (LPG) over Ni- and Rh-based catalysts supported on Gd-CeO2 (CGO) and Al2O3 was studied at 750-900 °C. The order of activity was found to be Rh/CGO > Ni/CGO ∼ Rh/Al2O3 > Ni/Al2O3; we indicated that the comparable activity of Ni/CGO to precious metal Rh/Al2O3 is due to the occurring of gas-solid reactions between hydrocarbons and lattice oxygen () on CGO surface along with the reaction taking place on the active site of Ni, which helps preventing the carbon deposition and promoting the steam reforming of LPG.The effects of O2 (as oxidative steam reforming) and H2 adding were further studied over Ni/CGO and Ni/Al2O3. It was found that the additional of these compounds significantly reduced the amount of carbon deposition and promoted the conversion of hydrocarbons (i.e., LPG as well as CH4, C2H4 and C2H6 occurred from the thermal decomposition of LPG) to CO and H2. Nevertheless, the addition of too high O2 oppositely decreased H2 yield due to the oxidizing of Ni particle and the possible combusting of H2 generated from the reaction, while the addition of too high H2 also negatively affect the catalyst activity due to the occurring of catalyst active site competition and the inhibition of gas-solid reactions between the gaseous hydrocarbon compounds and on the surface of CGO (for the case of Ni/CGO).  相似文献   

10.
CuO-CoO-Cr2O3 mixed with MFI Zeolite (Si/Al = 35) prepared by co-precipitation was used for synthesis gas conversion to long chain hydrocarbon fuel. CuO-CoO-Cr2O3 catalyst was prepared by co-precipitation method using citric acid as complexant with physicochemical characterization by BET, TPR, TGA, XRD, H2-chemisorptions, SEM and TEM techniques. The conversion experiments were carried out in a fixed bed reactor, with different temperatures (225-325 °C), gas hourly space velocity (457 to 850 h−1) and pressure (28-38 atm). The key products of the reaction were analyzed by gas chromatography mass spectroscopy (GC-MS). Significantly high yields of liquid aromatic hydrocarbon products were obtained over this catalyst. Higher temperature and pressure favored the CO conversion and formation of these liquid (C5-C15) hydrocarbons. Higher selectivity of C5 + hydrocarbons observed at lower H2/CO ratio and GHSV of the feed gas. On the other hand high yields of methane resulted, with a decrease in C5+ to C11+ fractions at lower GHSV. Addition of MFI Zeolite (Si/Al = 35) to catalyst CuO-CoO-Cr2O3 resulted a high conversion of CO-hydrogenation, which may be due to its large surface area and small particle size creating more active sites. The homogeneity of various components was also helpful to enhance the synergistic effect of Co promoters.  相似文献   

11.
Gas evolution kinetics of two coal samples during rapid pyrolysis   总被引:1,自引:0,他引:1  
Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 °C s− 1 and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H2, CO, CO2, and light hydrocarbons CH4, C2H2, C2H4, C2H6, C3H6, C3H8, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 °C. The low rank coal generated more CO and CO2 than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO2, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure.  相似文献   

12.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

13.
The effect of the addition of ethanol (EtOH) to the initial combustible mixture on the concentration of various compounds, in particular, those preceding the formation of polyaromatic hydrocarbons in a fuel-rich (equivalence ratio of fuel ? = 1.7) flat premixed ethylene/oxygen/argon flame at atmospheric pressure was studied experimentally and by numerical modeling using a detailed mechanism of chemical reactions. Concentrations of various stable and labile species, including reactants, major combustion products, and intermediates in C2H4/O2/Ar and C2H4/EtOH/O2/Ar flames were measured along the height above the burner using molecular beam mass spectrometry. Experimental mole fraction profiles were compared with those calculated using the previously proposed mechanisms of chemical reactions. This mechanism was analyzed to determine the cause of the ethanol effect on the flame concentration of propargyl, the main precursor of polyaromatic hydrocarbons.  相似文献   

14.
Studies were conducted at atmospheric pressure at temperatures in the range of 400–500°C and fluidizing gas velocities in the range of 0.37–0.58 m/min (at standard temperature and pressure) to evaluate the performance of various cracking catalysts for canola oil conversion in a fluidized-bed reactor. Results show that canola oil conversions were high (in the range of 78–98 wt%) and increased with an increase in both temperature and catalyst acid site density and with a decrease in fluidizing gas velocity. The product distribution mostly consisted of hydrocarbon gases in the C1–C5 range, a mixture of aromatic and aliphatic hydrocarbons in the organic liquid product (OLP) and coke. The yields of C4 hydrocarbons, aromatic hydrocarbons and C2–C4 olefins increased with both temperature and catalyst acid site density but decreased with an increase in fluidizing gas velocity. In contrast, the yields of aliphatic and C5 hydrocarbons followed trends completely opposite to those of C2–C4 olefins and aromatic hydrocarbons. A comparison of performance of the catalysts in a fluidized-bed reactor with earlier work in a fixed-bed reactor showed that selectivities for formation of both C5 and iso-C4 hydrocarbons in a fluidized-bed reactor were extremely high (maximum of 68.7 and 18 wt% of the gas product) as compared to maximum selectivities of 18 and 16 wt% of the gas product, respectively, in the fixed-bed reactor. Also, selectivity for formation of gas products was higher for runs with the fluidized-bed reactor than for those with the fixed-bed reactor, whereas the selectivity for OLP was higher with the fixed-bed reactor. Furthermore, both temperature and catalyst determined whether the fractions of aromatic hydrocarbons in the OLP were higher in the fluidized-bed or fixed-bed reactor.  相似文献   

15.
A quantitative mechanistic model for the low-pressure Fischer–Tropsch synthesis reaction on a Co/Ru/TiO2 catalyst is presented. Although the Fischer–Tropsch synthesis is operated at dry conditions, the presence of a physisorbed state is essential in the mechanism. The monolayer coverage of the C3 to C20 hydrocarbons in the physisorbed state is low at 0.3%. The most abundant chemisorbed surface species are COads and two single-C species, Cα,ads and Cβ,ads. The fractional surface coverage of growing hydrocarbon chains is low at 1.4%. With increasing H2/CO feed ratio, the surface concentrations of Hads and free sites increase. The rate coefficient for chain initiation is one order of magnitude lower than that for chain growth. The rate coefficient of ethene readsorption is one order of magnitude higher than that for the readsorption of higher 1-olefins. Chain branching and bond shift are important secondary reactions at atmospheric pressure, transforming reactive 1-olefins into unreactive internal and isoolefins and thus decreasing the asymptotic chain growth probability. As is to be expected, the termination to paraffin is represented by a hydrogenation reaction. The termination to olefin, however, appears to be a desorption reaction rather than a hydrogenation or a dehydrogenation reaction. The growing hydrocarbon chain is therefore represented by a CiH2i species. The quantitative mechanistic model as presented in this paper in combination with additional assumptions is used to successfully predict the characteristics of the product distribution of the high-pressure Fischer–Tropsch reaction.  相似文献   

16.
Molecular sieving carbons (MSCs) were prepared from carbonized phenol-formaldehyde resin wastes by the chemical vapor deposition (CVD) of the pyrolyzed carbon from hydrocarbon species. The pore size of the MSCs could be controlled in the range 0.37-0.42 nm by changing the hydrocarbon species pyrolyzed, the pyrolyzing temperature, and the processing time. It is shown that some of the MSCs have an excellent selectivity for separating CO2 and CH4, and others for separating C3H8 and C3H6. As the mechanism for controlling the pore size during CVD processing, we elucidated that the adsorption of hydrocarbon molecules first takes place on the pore surface and then the adsorbed hydrocarbons pyrolyze into carbon. Therefore, the pore size of the MSC can be adjusted by controlling the amount hydrocarbon adsorbed on the phenol-formaldehyde resin char.  相似文献   

17.
A nozzle, fabricated from nickel, molybdenum, iron, palladium, and quartz was utilized to produce longer chain hydrocarbons, C m H n (m ≥ 3, nm) from C2 (ethane, acetylene) and C1 (methane) reactants at nozzle temperature range 1000–1150°C. The conversion of ethane was close to 100% at T noz = 1000°C, while that of methane reached 20% at T noz = 1150°C. The contact time in the nozzle is in the 10-3–10-2 s range. The reactions are first and higher order in reactant pressure. The reaction mechanism involves the formation of free radicals at the nozzle surface followed by gas‐phase reactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Rates of reaction and product-distributions for small and large pellets and for small and large crystals of the same zeolite-preparation (H-ZSM-5) were observed in order to evaluate the influence of diffusion (concentration-gradients) on the conversion of (CH3)2O to hydrocarbons with this catalyst. Diffusivities of (CH3)2O and C6H6 in the zeolite crystals were obtained from sorption kinetics. Macropore-diffusion affects activity and selectivity if pellets with dia > 2 mm are used; intracystalline mass-transfer does not seem to be important with respect to catalyst-activity and selectivity at temperatures below 600 K. The conventional model of diffusion and reaction in porous catalysts can not be applied to the entire reaction-network in the zeolite-crystals, because migration of olefins in the zeolite can not be understood as random-walk diffusion.  相似文献   

19.
Yo-Ping G. Wu  Ya-Fen Lin  Chung-Lei Huang 《Fuel》2004,83(16):2237-2248
Experiments on pyrolysis of C2Cl4 with hydrogen in argon bath gas (C2Cl4: H2: AR=0.5:7:92.5) were performed in a laboratory scale flow reactor, to determine reaction paths and kinetic parameters, plus to observe hydrogen as a source to convert chlorocarbons into hydrocarbons and HCl. The reaction was carried out at 1 atmosphere total pressure in the tubular flow reactor, over temperature ranges from 575 to 850 °C, with average residence times in the range of 0.3 to 1.2 s. The major reaction products were C2HCl3, CH2CCl2, C2H6, C2H4 and HCl. Trace intermediates including CH4, C2H2, C3H6, C3H4, C4H8, C4H6, C4H4, C2H3Cl, C2HCl, trans-CHClCHCl, cis-CHClCHCl C2Cl2 and aromatic compounds were found. The equation for overall loss of C2Cl4 (k (s−1)) was 1.35×106exp(−27055/RT). This study shows that C2H4 became the major product for reaction temperatures higher than 700 °C, and became one of the final products together with HCl.A detailed kinetic mechanism consisting of 202 elementary reactions with 59 species was developed to model the results obtained from the experiments. Sensitivity analyses were performed to rank the significance of each reaction in the mechanism. Modeling and sensitivity analysis revealed that C2Cl4+H→C2HCl3+Cl, C2Cl4+H→C2Cl3+Cl, and C2Cl4→C2Cl3+Cl are the primary reactions for the decomposition of C2Cl4.  相似文献   

20.
《Catalysis communications》2007,8(9):1438-1442
Plasma catalytic reactions were applied to the conversion of methane to C2, C3 or higher hydrocarbons in a dielectric-barrier discharge (DBD) reactor at atmospheric pressure. Methane conversion was increased with the increase of Pt loading on γ-Al2O3. The highest C2H6 selectivity was 50.3% when 3 wt% Pt/γ-Al2O3 catalyst was calcined at 573 K. Methane conversion was increased with the increase of the catalyst weight in DBD reactor. The major products were C2H6 and C3H8, which were independent of catalyst weight in the presence of catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号