首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sihai Wen 《Carbon》2007,45(2):263-267
Electrically conductive cement-based materials are important as multifunctional structural materials. Double percolation has been observed for the first time in the electrical conduction in carbon fiber cement-based materials. It involves fiber percolation and cement paste percolation. The fiber percolation threshold increases with increasing sand/cement ratio and ranges from 0.30 to 0.80 vol.% fibers in the paste portion. The cement paste percolation threshold is between 70 and 76 vol.% carbon fiber cement paste in the mortar. A sand volume fraction of 24% or less (i.e., a sand/cement ratio of 0.75 or less) and a fiber content of 0.80 vol.% (or more) of the paste portion are recommended for attaining high conductivity. The use of a higher sand/cement ratio requires a higher fiber content to attain the same level of conductivity. For a compromise between cost and conductivity, a sand/cement ratio of 0.75 and a fiber content of 0.80 vol.% of the paste portion (corresponding to 0.59 vol.% of the mortar) is attractive. At a fixed fiber volume fraction in the paste portion, the conductivity of the mortar decreases with increasing sand/cement ratio.  相似文献   

2.
Cement paste containing short steel fibers (8 μm diameter, 0.18 vol.%) and polyvinyl alcohol (0.16 vol.%) exhibits longitudinal piezoelectric coupling coefficient d=2.5×10−11 m/V and piezoelectric voltage coefficient g=1.1×10−3 m2/C (10 kHz), compared to values of d=3.0×10−13 m/V and g=1.1×10−3 m2/C for cement paste without admixture, and values of d=1.4×10−11 m/V and g=1.5×10−3 m2/C for lead zirconotitanate (PZT).  相似文献   

3.
采用镀镍碳纤维(Ni-CF)制备导热水泥基复合材料,研究水灰比、纤维掺量和长度对水泥净浆试件升温值的影响,分析了Ni-CF掺量对水泥净浆试件电热升温和电热转化率的提升效果。结果表明:随着Ni-CF掺量的增加,试件的最大升温值呈先升高后降低的趋势,纤维掺量为0.4%(质量分数)时试件升温效果的提升最明显;当Ni-CF长度从4 mm增至8 mm时,水泥净浆试件的最大升温值逐渐降低;水灰比(W/C)为0.5时,Ni-CF水泥净浆试件通电发热的温度最高;Ni-CF提高水泥净浆试件电热转化率的效果较好,最高可达71.98%,是同配合比下碳纤维(CF)水泥净浆试件电热转化率的两倍。  相似文献   

4.
The self-sensing of stress by measurement of the relative dielectric constant (κ) has been shown in cement pastes containing steel fibers of 8 μm diameter and carbon filaments of 0.1 μm diameter. The κ value increases nonlinearly and quite reversibly with compressive stress up to 6.4 MPa, although the reversibility is not complete. Inferior sensing performance was observed in cement paste with carbon fibers of 15 μm diameter, although the performance was still better than cement paste without admixture.  相似文献   

5.
《Ceramics International》2016,42(10):11568-11573
Thermoelectric properties of carbon fiber reinforced cement composites (CFRCs) have attracted relevant interest in recent years, due to their fascinating ability for harvesting ambient energy in urban areas and roads, and to the widespread use of cement-based materials in modern society. The enhanced effect of the thin pyrolytic carbon layer (formed at the carbon fiber/cement interface) on transport and thermoelectric properties of CFRCs has been studied. It has been demonstrated that it can enhance the electrical conduction and Seebeck coefficient of CFRCs greatly, resulting in higher power factor 2.08 µW m−1 K−2 and higher thermoelectric figure of merit 3.11×10−3, compared to those reported in the literature and comparable to oxide thermoelectric materials. All CFRCs with pyrolytic carbon layer, exhibit typical semiconductor behavior with activation energy of electrical conduction of 0.228-0.407 eV together with a high Seebeck coefficient. The calculation through Mott’s formula indicates the charge carrier density of CFRCs (1014–1016 cm−3) to be much smaller than that of typical thermoelectric materials and to increase with the carbon layer thickness. CFRCs thermal conductivity is dominated by phonon thermal conductivity, which is kept at a low level by high density of micro/nano-sized defects in the cement matrix that scatter phonons and shorten their mean free path. The appropriate carrier density and mobility induced by the amorphous structure of pyrolytic carbon is primarily responsible for the high thermoelectric figure of merit.  相似文献   

6.
Barium zirconate titanate (40−60 vol.%; BZT), Portland cement (PC) and polyvinylidene fluoride (0−7 vol.%; PVDF) were used as raw materials to produce 0–3 piezoelectric cement-based composites. The highest piezoelectric charge coefficient (d33∼26-27 pC/N) was found at 50−60 vol.% BZT with 5 vol.% PVDF. Moreover, the composite with 50 vol.% BZT and 5 vol.% PVDF had the highest piezoelectric voltage coefficient (g33 = 16.0 × 10−3 V·m/N). Scanning electron microscopy was used to investigate the morphology of the fracture surface of the composite. When PVDF was used in the composite, it was observed to fill some pores at the interface zone and within the cement phase. The elastic behaviour of PVDF could also be seen in the fracture surface, where it appeared as a stretched material different from both the BZT ceramic and cement, which are brittle materials. In addition, increasing the PVDF content led to increased fracture toughness.  相似文献   

7.
热循环对水泥基材料抗压强度的影响及机理研究   总被引:2,自引:0,他引:2  
李清海  姚燕 《硅酸盐学报》2006,34(10):1287-1289
研究了硬化水泥基材料在20~180℃范围内热循环20次后强度的变化规律,经热循环试样强度较同龄期对比试样的强度有明显下降的结论.通过对水泥石和石英砂集料的线膨胀率的精确测定,对比两者线膨胀率的差异,找出热循环时导致水泥基材料内应力产生的原因,并解释硬化水泥基材料经热循环后强度性能降低的现象.  相似文献   

8.
Electric polarization is basic to the dielectric behavior, which is pertinent to the science and applications of cement-based materials. This work reports the dynamics of the DC-current-induced electric polarization/depolarization of cured cement paste and their dependence on the water/cement ratio. This dependence has not been previously reported for any cement-based material. The extent of the polarization is unexpectedly found in this work to decrease as the water/cement ratio increases, indicating that the free water hinders the polarization. This hindrance is due to (i) the dominance of ions behind the polarization (as supported by the previously reported increase in permittivity with increasing temperature), and (ii) the polar water molecules partly shielding the ions from the applied electric field. The fraction of ions in the pore solution that participates in the polarization increases with the polarization time and is 4.5 × 10-14 for 570 s of polarization at a current of 1 μA for water/cement ratio 0.35. Upon increasing the water/cement ratio (0.3–0.4), the polarization rate decreases, the polarization extent at a given polarization time decreases, and the time to reach polarization saturation decreases. The polarization/depolarization rate decreases as the current application progresses because the polarization/depolarization hinders further polarization/depolarization. The degree of this hindrance increases with increasing water/cement ratio. Thus, a higher water/cement ratio is preferred if less polarization is desired as in resistance-based self-sensing, whereas a lower water/cement ratio is preferred if more polarization is desired as in capacitance-based self-sensing.  相似文献   

9.
采用低pH值水泥基材料固化高放射废弃物具有很好的优势,而水泥基灌浆材料的流变性能是评价高放废物深地质处置用灌浆材料的重要指标之一.探究了水灰比、外加剂对磷铝酸盐水泥流变性能以及保水性能的影响规律.结果表明:水灰比越大,浆体粘度越小,流动性能越好,但浆体越不稳定,越容易离析;而且MgO膨胀剂的掺入,增大了浆体的粘度,其中膨胀剂活性越高,浆体的流变性越差;羟丙基甲基纤维素醚以及钠基膨润土掺入改善水泥浆体保水性能,羟丙基甲基纤维素醚的保水效果优于钠基膨润土,当HPMC掺量大于0.3%,灌浆液不析水;掺加减水剂降低了浆体的粘度,且聚羧酸系减水剂的减水效果优于萘系减水剂,同时减水剂的掺入会使浆体的稳定性下降.  相似文献   

10.
Kesong Hu  D.D.L. Chung 《Carbon》2011,(4):1075-1086
Polyol-ester-based carbon black pastes are used to either coat or penetrate flexible graphite, thereby increasing the thermal contact conductance of flexible graphite between copper surfaces. Paste penetration by up to an effective paste thickness (the volume of the penetrated paste divided by the geometric area of the flexible graphite) of 5 μm increases the conductance by up to 350%, 98% and 36% for thicknesses of 50, 130 and 300 μm, respectively. Paste coating up to 10 μm increases the conductance by up to 200%, 120% and 65% for thicknesses of 50, 130 and 300 μm, respectively. The paste penetration is more effective than the paste coating in enhancing the conductance, when the thickness is below 130 μm. At thickness ?130 μm, paste penetration and paste coating are similarly effective. These results stem from the relatively low interfacial thermal resistivity provided by paste penetration and the relatively high through-thickness thermal conductivity provided by paste coating. Paste penetration decreases the thermal conductivity of flexible graphite, but paste coating does not affect the conductivity. Both penetration and coating decrease the interfacial resistivity. The highest thermal contact conductance is 1.4 × 105 W/m2 K, as provided by paste-penetrated flexible graphite of thickness 26 μm.  相似文献   

11.
Within the concepts under study for the geological disposal of intermediate-level long-lived waste, cement-based materials are considered as candidate materials. The clayey surrounding rock and the cement-based material being considered differ greatly in their porewater composition. Experiments are conducted on the diffusion of solutes constituting those porewaters in a confined clay/cement composite system using cells. The test temperature was set at 25 °C and 2, 6 and 12 months. Results supply new information: carbonation is low and not clog the interface. Such absence of carbonation allows for the diffusion of aqueous species and, thus, for the degradation of the cement paste and the illitisation of illite/smectite interstratifications. The cement material is subjected to a decalcification: portlandite dissolution and a CaO/SiO2 reduction in the calcium silicate hydrate. The sulphate in diffusion induces non-destructive ettringite precipitation in the largest pores. After 12 months, about 800 µm of cement material is concerned by decalcification.  相似文献   

12.
宋杨  李金远  李俊锋  陈望  吴海洋 《硅酸盐通报》2020,39(12):3799-3805
渗透性直接决定了有害物质在混凝土等水泥基材料中的传输速度,是影响混凝土耐久性的关键指标。基于水泥浆体三维孔隙结构和压汞试验数据,分别采用Katz-Thompson方程和格子Boltzmann方法模拟计算水泥浆体试样的渗透率,并与气体渗透测试结果进行对比,其结果表明:硬化水泥净浆气体渗透率测试结果为3.82×10-18~7.29×10-18 m2;Katz-Thompson方程的预测结果仅具有数量级的准确度,不能真实准确地预测水泥浆体孔隙结构的渗透率;格子Boltzmann方法能够准确地预测水泥浆体的本质渗透率,为4.88×10-19~15.48×10-19 m2;气体渗透测试结果比模拟结果高约2~10倍,表明水泥浆体中毛细孔依然是渗透的主要路径,而气孔和微裂缝仅在局部起到了提高气体渗透率的作用。  相似文献   

13.
杨林  张云升  张春晓 《硅酸盐通报》2020,39(12):3775-3782
利用X射线计算机断层扫描(X-CT)联合Cs离子增强技术连续监测水分在非饱和水泥基材料中的动态传输过程,建立水分传输距离与时间的关系,获得水分传输的毛细吸水系数,在此基础上提出了计算水泥基材料渗透系数的理论模型。系统研究了水灰比、粉煤灰掺量、矿渣掺量和砂体积掺量对水泥基材料毛细吸水系数和渗透系数的影响,结果表明:当水灰比从0.35增大到0.55时,硬化水泥浆体的毛细吸水系数从2.07×10-4 m/s1/2增大到3.22×10-4 m/s1/2,而固有渗透系数增大1个数量级;粉煤灰的掺入能有效降低浆体的水分传输性能,且粉煤灰的最佳掺量为30%(质量分数),当矿渣掺量为30%(质量分数)时,硬化浆体的固有渗透系数比掺同等质量粉煤灰的高1个数量级;当砂体积掺量从0%增加到40%时,砂浆的毛细吸水系数和固有渗透系数均下降,当砂体积掺量大于42.4%时,砂浆的界面过渡区(ITZ)连通,砂浆的毛细吸水系数增大。  相似文献   

14.
1H NMR has been used to characterise white Portland cement paste incorporating 10 wt.% of silica fume. Samples were measured sealed throughout the hydration without sample drying. Paste compositions and C–S–H characteristics are calculated based on 1H NMR signal intensities and relaxation analysis. The results are compared with a similar study of plain white cement paste. While the presence of silica fume has little influence on C–S–H densities, the chemical composition is impacted. After 28 days of sealed hydration, the Ca/(Si + Al) ratio of the C–S–H is 1.33 and the H2O/(Si + Al) ratio is 1.10 when 10% of silica fume is added to the white cement. A densification of the C–S–H with time is observed. There are no major changes in capillary, C–S–H gel and interlayer pore sizes for the paste containing silica fume compared to the plain white cement paste. However, the gel/interlayer water ratio increases in the silica fume blend.  相似文献   

15.
The pyroelectric materials have immense applications in the uncooled infrared thermal detectors. However, owing to increasing environmental concerns due to Pb element, it is required to explore novel, high-performance, environmental-friendly pyroelectric materials. This is the first study to report about the pyroelectric properties of lead-free NaNbO3 ceramics, which displayed a high pyroelectric coefficient of 1.85 × 10?8 C cm-2 K?1 and figures of merit as Fi = 0.67 × 10?10 m V?1, Fv = 3.33 × 10?2 m2 C?1, and Fd = 5.32 × 10-5 Pa?1/2 at room temperature. Also, highly temperature-stable pyroelectric characteristics were also observed in NaNbO3 ceramics due to the high depolarization temperature of 280 ℃. The high pyroelectric properties and temperature stability were a result of the electric field induced irreversible phase transition from antiferroelectric to ferroelectric. Hence, we can conclude that lead-free NaNbO3 ceramics are a novel and promising candidate for pyroelectric detectors in a wide temperature range, especially for large area detectors and pyroelectric point detector.  相似文献   

16.
本实验通过控制变量法对照试验,先用不同掺量的泵送剂对水泥净浆扩展度、砂浆扩展度以及混凝土扩展度和坍落度的影响试验,找出泵送剂最优的掺量对水泥基材料的影响。在确定了泵送剂对水泥基材料的最优掺量后,与不同掺量的絮凝调节剂进行复掺试验,然后得到泵送剂与絮凝调节剂对水泥净浆、砂浆的扩展度以及混凝土坍落度和扩展度的影响。最终选择出最优的的絮凝调节剂与泵送剂复掺掺量,对水泥基材料的协同优化效果最好。  相似文献   

17.
It has long been recognized, in cement chemistry, that two types of calcium-silicate-hydrate (C-S-H) exist in cement-based materials, but less is known about how the two types of C-S-H affect the mechanical properties. By means of nanoindentation tests on nondegraded and calcium leached cement paste, the paper confirms the existence of two types of C-S-H, and investigates the distinct role played by the two phases on the elastic properties of cement-based materials. It is found that (1) high-density C-S-H are mechanically less affected by calcium leaching than low density C-S-H, and (2) the volume fractions occupied by the two phases in the C-S-H matrix are not affected by calcium leaching. The nanoindentation results also provide quantitative evidence, suggesting that the elastic properties of the C-S-H phase are intrinsic material properties that do not depend on mix proportions of cement-based materials. The material properties and volume fractions are used in a novel two-step homogenization model, that predicts the macroscopic elastic properties of cement pastes with high accuracy. Combined with advanced physical chemistry models that allow, for a given w/c ratio, determination of the volume fractions of the two types of C-S-H, the model can be applied to any cement paste, with or without Portlandite, Clinker, and so on. In particular, from an application of the model to decalcified cement pastes, it is shown that that the decalcification of the C-S-H phase is the primary source of the macroscopic elastic modulus degradation, that dominates over the effect of the dissolution of Portlandite in cement-based material systems.  相似文献   

18.
A water-saturated cement paste (water-to-cement, w/c=1.0) confined in a solution of ethanol saturated with a fluorescent dye showed complete exchange of water after 2 days. The exchange rates of water and ethanol were independent of the presence of dye and determined to be 42×10−8 and 60×10−8 cm2/s, respectively. The exchange rate of dye was significantly smaller, by a factor of two to three. The exchange process resulted in a partitioning of the concentration of dye in ethanol within cement and bulk of (0.46+0.20). 1H-NMR spectral analysis of the dye before and after exchange suggests the dye to be inert, i.e., it does not react with the cement paste. Furthermore, no indication of a reaction between ethanol and cement paste is observed.  相似文献   

19.
利用化学共沉淀法制备纳米Mn-Zn铁氧体磁流体,再以一定比例将其掺入水泥浆体制备吸波层,以膨胀珍珠岩作为匹配层,制备双层水泥基吸波材料,研究了不同纳米组分掺入量对该种水泥基材料吸波性能的影响.结果表明:纳米Mn-Zn铁氧体吸波砂浆在厚度(20+10)mm、掺量7%时,在8~18 GHz频段内反射率都小于-10 dB,最小反射率为18 GHz处的-15.1 dB.  相似文献   

20.
Carbonation curing provides a promising method for both CO2 sequestration and strength improvement of cement-based materials. To date, there is little knowledge about the influence of carbonation curing on Ca leaching resistance of cement-based materials due to the occurrence of both physical and chemical transformation. It was the first time that Ca solid-liquid equilibrium curves were experimentally established for cement pastes with different carbonation degrees in this paper. Experimental results demonstrated that on the one hand, carbonation curing improves the leaching resistance of cement paste by sequestrating Ca in insoluble CaCO3; on the other hand, potential negative effects may occur due to the accelerated decalcification and increased solubility of C–S–H after carbonation curing. Results of NMR showed that both carbonation curing and Ca leaching can increase the Si chain length and polymerization degree of C–S–H. Additionally, a modified mathematical model was established to simulate the leaching process of carbonation-cured cement paste and it was also verified by energy-dispersive spectroscopy (EDS) results. Therefore, the long-term leaching resistance of cement-based materials is possibly degraded by the carbonation curing treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号