首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetic properties of multi-walled carbon nanotubes (MWCNTs) modified with cobalt nanoparticles were studied in the temperatures and magnetic field range of (4.2–290) K and (0.03–5) T, respectively. Nanoparticles of cobalt encapsulated inside MWCNTs were obtained by using the chemical vapor deposition technique. The low temperature SQUID magnetization measurements were supplemented with structural investigations by means of high-resolution transmission electron microscopy, scanning electron microscopy as well as thermogravimetric and X-ray diffraction analysis. X-ray diffraction revealed the presence of MWCNTs, f.c.c. Co and h.c.p. Co phases. The magnetic characterization provided the remanent magnetization value (MR) of about 0.07 emu/g (∼40% of the saturation moment), while the coercive field (HC) value amounts to 600 Oe. Both parameters MR and HC slightly decrease with the rise of temperature. The substantial magnetization increase observed at low temperatures suggests the existence of nano Co clusters (in the atomic scale size).  相似文献   

2.
《Ceramics International》2016,42(12):13773-13782
Nickel and cobalt substituted manganese ferrite nanoparticles (NPs) with the chemical composition NixCoxMn1–2xFe2O4 (0.0≤x≤0.5) NPs were synthesized by one-pot microwave combustion route. The effect of co-substitution (Ni, Co) on structural, morphological and magnetic properties of MnFe2O4 NPs was investigated using XRD, FT-IR, SEM, VSM and Mössbauer spectroscopic techniques. The cation distribution of all products were also calculated. Both XRD and FT-IR analyses confirmed the synthesis of single phase spinel cubic product for all the substitutions. Lattice constant decreases with the increase in concentration of both Co and Ni in the products. From 57Fe Mössbauer spectroscopy data, the variations in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values with Mn2+, Ni2+ and Co2+ substitution have been determined. While the Mössbauer spectra collected at room temperature for the all samples are composed of magnetic sextets, the superparamagnetic doublet is also formed for MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs. The magnetization and Mössbauer measurements verify that MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs have superparamagnetic character. The saturation and remanence magnetizations, magnetic moment and coercive field were determined for all the samples. Room temperature VSM measurements reveals saturation magnetization value close to the bulk one. It has been observed that the saturation magnetization and coercive field increase with respect to the Ni and Co concentrations.  相似文献   

3.
Preparation of nanosized CoxFe3−xO4; 0.05 ≤ x ≤ 0.20 particles from metal nitrates solution through citrate–precursor method was performed. XRD pattern of all prepared systems showed single phase with cubic spinel structure. The crystallite size was determined from TEM and found to agree with that calculated from Sherrer's equation (60–76 nm) The magnetic constants such as molar magnetic susceptibility (χM), Curie temperature (TC) and saturation magnetization (MS) were measured and the results indicated that, at x = 0.2 the values of χM, MS, remanent magnetization (Mr,) and coercive field (Hc) are 23 emu/g mol, 77.62 emu/g, 33.17 emu/g and 574.5 Oe, respectively.  相似文献   

4.
《Ceramics International》2019,45(13):16512-16520
Zinc-substituted cobalt oxide nanoparticles (ZnxCo3-xO4, 0 ≤ x ≤ 0.5) were produced by microwave refluxing technique. The structural, microstructural and magnetic properties of these samples were studied using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and magnetic property measurement system (MPMS) respectively. XRD and TEM analyses confirmed the single phase nature for all the samples. Rietveld analysis of the samples further confirmed the substitution of Zn-ions into the Co3O4 lattice. The chemical states of the elements were studied using X-ray photoelectron spectroscopy (XPS), which suggest the presence of Zn2+, Co2+, and Co3+ ions in the samples. The maximum saturation magnetization (MS) values of 0.33 Am2/kg was obtained for x = 0.01 sample, and then it continuously reduced with increased Zn content. The dielectric property of the samples was studied in the frequency range of 40 Hz–110 MHz. The samples x = 0.05 and 0.5 displayed the lowest conductivity due to the narrow size distribution of grains.  相似文献   

5.
E.P. Sajitha  V. Prasad  S. Eto  T. Enoki 《Carbon》2004,42(14):2815-2820
Iron nanoparticles in a carbon matrix were synthesized by in situ pyrolysis of maleic anhydride and ferrocene, using different molecular weight percentages. The characterization and magnetic properties of the carbon-iron system were investigated systematically. Transmission electron microscope (TEM) images showed that the as-prepared samples consist of nanometric dark grains (iron-rich phase) embedded in a light matrix (carbon-rich phase). X-ray diffraction and TEM selected area diffraction revealed catalytic graphitization and iron phases present in the sample. The carbon-metal system shows a finite hysteresis loop even at room temperature indicating its ferromagnetic nature. The saturation magnetization equals the bulk iron carbide value at low temperature. The coercive force exhibits 1/d dependence at low temperature having a maximum HC of 2 kOe for the lowest iron concentration sample.  相似文献   

6.
The synergistic influence of lanthanum and cobalt co-doping on room temperature ferromagnetism (RTFM) of TiO2 system is investigated. A series of Ti0.97?xCo0.03LaxO2 nanoparticles were prepared and their structures and properties were systematically studied with X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, UV–vis spectrophotometer, Raman spectra and magnetic measurement techniques, respectively. Detailed experimental characterizations indicate that the as-prepared La and Co co-doped samples exhibit single anatase phase, and all the samples exhibit strong visible photoluminescence associated with oxygen vacancies and a clear ferromagnetic hysteresis loop, both of which were dramatically enhanced with La and Co co-doping, and the maximum saturation magnetization (Ms) reaches 1.38 emu/g at the La content of 6 mol%. It is speculated that oxygen vacancies modulated by ionic La play an important role in the enhanced RTFM, which can be attributed to the bound magnetic polarons (BMPs) formed via ferromagnetic coupling between two neighboring Co2+ ions mediated by oxygen vacancy (F+ center). Our results present an alternative method to obtain high performance RTFM.  相似文献   

7.
《Ceramics International》2016,42(16):18312-18317
This paper reports on novel cobalt oxide nanoparticles (NPs) embedded in an amorphous silica (SiO2) matrix, synthesized using a modified sol-gel method. SEM and TEM images show as-synthesized particles to aggregate in the shape of spheres and less than 5 nm in size, while XRD and SAED analysis both point to well crystallized cubic spinel cobalt oxide phase with an average crystallite size of about 4.6 nm. Raman analysis confirms the formation of cobalt (III) oxide (Co3O4) NPs. As-synthesized Co3O4 single-nanocrystallite has magnetic properties that correlate with finite size effects and uncompensated surface spins. Temperature dependence of ZFC-FC magnetization curves reveals a sharp peak around 10 K which corresponds to the blocking temperature. A Curie-Weiss behavior of magnetization above 25 K shows lower Néel temperature of the sample compared with its bulk counterpart TN=40 K (possibly due to crystal defects and nano-dimensionality of the particles). The magnetic measurements exhibit high magnetization at low temperatures (MS=54.3 emu/g) which can be associated with random canting of the particles’ surface spins and uncompensated spins in the core which tends to interact ferromagnetically at low temperatures. The initial magnetization curve falls out from the hysteresis loop at 5 K, which could be also the effect of surface spins.  相似文献   

8.
The paper presents the influence of diol (1,2-ethanediol, 1,2-propanediol, 1,3-propanediol and 1,4-butanediol) on the formation of magnetic crystalline cobalt ferrite embedded in polyvinyl alcohol-silica hybrid matrix at 200?°C. Formation of crystalline oxides (CoFe2O4, Co3O4 and Co2SiO4) was studied by X-ray diffraction and Fourier transformed infrared spectroscopy. The effect of annealing temperature and diol chain length on the cobalt ferrite nanocrystallites size was investigated. Using transmission electron microscopy, the size and shape of particles obtained at 200?°C were recorded and compared to those obtained by annealing at 500, 800 and 1100?°C. The saturation magnetization (Ms) and coercive field were calculated from the magnetic hysteresis loops of nanocomposites. The Ms was influenced by the particle size and crystallinity only for nanocomposites annealed at 800 and 1100?°C, when the magnetic domains started to form and to be larger than the critical particle size. The diols used in the synthesis influence both the oxidic phase formation and its properties.  相似文献   

9.
Co/Rh heterobimetallic nanoparticles were prepared from cobalt‐rhodium carbonyl clusters [Co2Rh2(CO)12 and Co3Rh(CO)12] and immobilized on charcoal. HR‐TEM revealed that the size of the heterobimetallic nanoparticles was ca. 2 nm and ICP‐AES analysis showed a 2 : 2 and a 3 : 1 cobalt‐rhodium stoichiometry (Co2Rh2 and Co3Rh1) in the heterobimetallic nanoparticles. The Co/Rh heterobimetallic nanoparticles immobilized on charcoal were used as a catalyst in the Pauson–Khand‐type reaction under 1 atm of CO. The catalytic reactivity was highly dependent upon the ratio of Co : Rh with the highest reactivity being observed when the ratio was 2 : 2 (Co2Rh2). The Co2Rh2 immobilized catalyst is quite an effective catalyst for intra‐ and intermolecular Pauson–Khand‐type reactions. When the immobilized Co2Rh2 catalyst was used as a catalyst in the Pauson–Khand‐type reaction in the presence of an aldehyde instead of carbon monoxide, the catalytic system was highly efficient. When the reaction was carried out in the presence of chiral diphosphines, ee values up to 87% were observed. The catalytic system can be reused at least five times in the presence of chiral diphosphines without loss of catalytic activity and enantioselectivity. The addition of Hg(0), a known heterogeneous catalyst poison, completely inhibits further catalysis. Thus, an environmentally friendly and sustainable process was developed.  相似文献   

10.
Ferrites may contain single domain particles which gets converted into super-paramagnetic state near critical size. To explore the existence of these characteristic feature of ferrites, we have performed magnetization(M-H loop) and Mössbauer spectroscopic studies of Ni2+ substitution effect in Co1-xNixFe2O4 (where x?=?0, 0.25, 0.5, 0.75 and 1) nanoparticles were fabricated by solution combustion route using mixture of carbamide and glucose as fuels for the first time. As prepared samples exhibit spinel cubic structure with lattice parameters which decreases linearly with increase in Ni2+ concentration. The M-H loops reveals that saturation magnetization(Ms), coercive field(Hc) remanence magnetization(Mr) and magnetron number(ηB) decreases significantly with increasing Ni2+ substitution. The variation of saturation magnetization has been explained on the basis of Neel's molecular field theory. The coercive field(Hc) is found strongly dependent on the concentration of Ni2+ and decrease of coercivity suggests that the particles have single domain and exhibits superparamagnetic behavior. The Mössbauer spectroscopy shows two ferrimagnetically relaxed Zeeman sextets distribution at room temperature. The dependence of Mössbauer parameters such as isomer shift, quadru pole splitting, line width and hyperfine magnetic field on Ni2+ concentration have been discussed. Hence our results suggest that synthesized materials are potential candidate for power transformer application.  相似文献   

11.
A magnetic nanocomposite was generated by the sol–gel auto-combustion method in the presence of 1-methyl-2-pyrrolidone, a functional solvent. The temperature-dependent magnetic properties of the CoFe2O4 nanoparticles have been extensively studied in the temperature range of 10–400 K and magnetic fields up to 80 kOe. Zero field cooled (ZFC) and field cooled (FC) curves indicate that the blocking temperature (TB) of the CoFe2O4 nanoparticles is above 400 K. It was found from M–H curves that the low temperature saturation magnetization values are higher than bulk value of CoFe2O4. The saturation magnetization (Ms), remanence magnetization (Mr), reduced remanent magnetization (Mr/Ms) and coercive field (Hc) values decrease with increasing temperature. The Mr/Ms value of 0.75 at 10 K indicates that the CoFe2O4 nanoparticles used in this work have, as expected, cubic magnetocrystalline anisotropy according to the Stoner–Wohlfarth model. T1/2 dependence of the coercive field was observed in the temperature range of 10–400 K according to Kneller's law. The extrapolated TB and the zero-temperature coercive field values calculated according to Kneller's law are almost 427 K and 13.2 kOe, respectively. The room temperature Hc value is higher than that of the previously reported room temperature bulk values. The effective magnetic anisotropy constant (Keff) was calculated as about 0.23×106 erg/cm3 which is lower than that of the bulk value obtained due to disordered surface spins.  相似文献   

12.
Results of the characterization of six Co-based Fischer–Tropsch (FT) catalysts, with 15% Co loading and supported on SiO2 and Al2O3, are presented. Room temperature X-ray diffraction (XRD), temperature and magnetic field (H) variation of the magnetization (M), and low-temperature (5 K) electron magnetic resonance (EMR) are used for determining the electronic states (Co0, CoO, Co3O4, Co2+) of cobalt. Performance of these catalysts for FT synthesis is tested at reaction temperature of 240 °C and pressure of 20 bars. Under these conditions, 15% Co/SiO2 catalysts yield higher CO and syngas conversions with higher methane selectivity than 15% Co/Al2O3 catalysts. Conversely the Al2O3 supported catalysts gave much higher selectivity towards olefins than Co/SiO2. These results yield the correlation that the presence of Co3O4 yield higher methane selectivity whereas the presence of Co2+ species yields lower methane selectivity but higher olefin selectivity. The activities and selectivities are found to be stable for 55 h on-stream.  相似文献   

13.
Polycrystalline LaMn1-xCoxO3 (0.1≤ x ≤ 0.5) samples were synthesized using conventional ceramic method. Rietveld refined X-ray diffraction pattern revealed the single-phase orthorhombic crystal structure of all the samples with the space group Pbnm. Temperature-dependent magnetic measurements performed in field cooled (FC) and zero field cooled (ZFC) mode at 102 Oe exhibit the onset of double transition in x = 0.3–0.5 compositions. The ordering temperature rises with an increase in Co concentration. FC and ZFC studies show the presence of glassy state below the ordering temperature in all samples; confirmed using a. c. susceptibility measurements. The a. c. susceptibility data are analyzed using power law and the existence of canonical spin glass is revealed. Magnetic hysteresis studies demonstrate the enhanced ferromagnetism amid the presence of unsaturated magnetization with an increase in Co doping. The presence of double transition and spin glass state is attributed to the competing ferromagnetic and anti-ferromagnetic interactions between the Co and Mn ions present in the system. The system also depicts the presence of appreciable value of magnetoresistance ~42% at 8 T magnetic field in x = 0.5 sample. These properties are interpreted through valence and spin states of Mn and Co ions, being confirmed from electronic structure studies using X-ray absorption spectroscopy (XAS) at L3,2- edges of respective ions along with O K-edge for all samples (0.1≤ x ≤ 0.5). After meticulous analysis and conjoining the results obtained from magnetization and XAS studies, it is found that cobalt is present in high spin Co2+ and high/low spin Co3+-state. Charge transfer multiplet calculation done at L3,2 edges of Mn and Co ions confirm the presence of Mn3+/Mn4+ and Co2+/Co3+ states consistent with XAS results. X-ray photoelectron spectroscopy performed at Mn2p, Co2p, and O1s -edges further substantiate the reasons behind the properties exhibited by the present system.  相似文献   

14.
Thick cobalt coatings obtained by electrodeposition   总被引:1,自引:0,他引:1  
Thick cobalt coatings (10–40 m) with a range of morphology and structure were obtained by electrodeposition on both vitreous carbon and copper electrodes. There is a direct relation between the morphology, structure and magnetic properties of cobalt deposits. A chloride medium at pH 4 and low deposition rates favoured the formation of black, ridge-like deposits of hexagonal close packed (h.c.p.) structure with mixed (100) + (110) preferred orientations. In CoCl2 at pH 4 at current densities in excess of –80 mA cm–2 and in CoSO4, dull grey deposits of h.c.p. (110) structure formed. Sulfate + citrate and chloride + citrate baths at pH 1.5 and very negative current densities promoted the formation of metallic grey deposits with face centred cubic (f.c.c.) structure. Constant saturation magnetization (M s) was obtained for cobalt deposits independently of their structure (M s = 160 emu g–1) although the coercive field (H c) of the material varied: h.c.p. (100) > h.c.p. (110) > f.c.c.  相似文献   

15.
《Ceramics International》2020,46(13):21046-21055
Ultrafine powders of Cobalt doped manganese ferrite with elemental composition Mn1-xCoxFe2O4 (x = 0.2, 0.4, 0.6, 0.8) were synthesized using combustion method. The formation of the pure cubic spinel phase of ferrite structure was confirmed using X-ray diffraction and Fourier transform infrared spectroscopy. Structural parameters such as lattice constant, X-ray density, mass density, porosity, and cell volume were seen to be greatly influenced by cobalt doping. The surface morphology of the nanocrystalline samples was studied using a scanning electron microscope. The particle size distribution was determined using a Transmission electron microscope and nanograins of the samples were found to have dimensions in the range 15 nm–30 nm. It also showed its dependence on the extent of cobalt inclusion. Variation of magnetization and magnetic moment as a function of magnetic field and temperature was investigated using a vibrating sample magnetometer (VSM). The parameters such as saturation magnetization ‘MS’ and inversion temperature TI were seen to depend upon Co+2 concentration. The variation dielectric constant ‘Ԑ’ as a function of frequency was studied. Antifungal activity of these ferrite nanoparticles against Rhizopus fungi was also investigated at room temperature. The antifungal activity was seen to increase with increasing Co+2 content in the manganese ferrite structure and hence cobalt doped manganese ferrites are proposed as a candidate material for industries manufacturing antifungal products. The adsorption studies were also investigated using Methylene dye as the adsorbate.  相似文献   

16.
Ce3+ ion substituted Sr-hexaferrite magnetic nanoparticles (MNPs), SrCexFe12-xO19 (0.0?≤?x?≤?0.5) MNPs, were fabricated by citrate sol-gel combustion approach. All products have been characterized using X-ray diffraction (XRD), Photoluminescence, scanning electron microscopy (SEM), elemental mapping (EDS), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) at 300 and 10?K. The XRD pattern presents effective substitution of Ce3+ on the sites of strontium hexaferrite lattice. With Ce3+ doping, the lattice parameters a is almost unchanged, whereas c is a little increases with increasing the dopant contents. The hysteresis loops M-H showed the ferromagnetic nature of all elaborated. The saturation magnetization (Ms) and the remnant magnetization (Mr) are reduced with increasing Ce amount. All the elaborated products presented typically squarness ratio (Mr/Ms) around 0.5, indicating the existence of non-interacting single domain MNPs with a uniaxial anisotropy. The anisotropy fields (Ha) are found to be very large proving that all products are magnetically hard. With increasing the Ce content, Ha increases which indicate the strengthening of magnetic properties. Consequently, the values of coercive field (Hc) are enhanced, leading these products to be utilized in many uses, such as recording media and permanent magnets. ZFC and FC magnetizations curves indicated shifts of the blocking temperature (TB) to lower temperatures with increasing Ce content. This is accredited to the reducing of particle size with Ce-substitution.  相似文献   

17.
Nano sized polycrystalline soft ferrite particles with composition Cu1−xCoxFe2O4 (x =0.1, 0.3, 0.5, 0.7, 0.9) were synthesized by the sol–gel technique. The existence of well-defined single cubic spinel structure was confirmed in all the samples by X-ray diffraction. The crystallite size found by XRD varied from 14.8 to 34.0 nm. The microstructure was also characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Slight expansion of the unit cell was detected with the increase of Cobalt concentration, which may be attributed due to larger ionic radius of Co2+. Lattice parameter ranged from 8.34 Å to 8.37 Å for Co2+ from 0.1–0.9. The distribution of cations amongst A- and B-sites of the lattice was estimated by X-ray diffraction by using the R-factor technique. The results showed that both Cu2+ and Co2+ ions occupy mainly the B-site while Fe3+ ions were equally distributed among A- and B-sites. The data obtained from cation distribution analysis was used to determine the magnetic moment for each sample and VSM studies were also carried out to validate these calculations. Magnetic measurements showed that the saturation magnetization (Ms) and coercivity (Hc) increased with increasing cobalt content.  相似文献   

18.
《Ceramics International》2023,49(16):26530-26539
Perovskite-like rhombohedral distorted solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni, Zn, x = 0–0.11) were obtained by solid-phase synthesis. An indicator of the solid solution formation is the change of unit cells parameters, that corresponds to the ionic radii of mixed cations (M1/2Ti1/2)3+ (M = Co, Ni, Zn. Solid solutions of BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni), in contrast to BiFe1-x(Zn1/2Ti1/2)xO3 demonstrate ferromagnetic hysteresis pels at room temperature. The x growth in the range from 0.01 to 0.11 for the BiFe1-х(M1/2Ti1/2)хO3 system leads to, the saturation magnetization MS and the remanent magnetization MR increase from ∼0.1 and ∼2.4⋅10−3 emu/g to ∼0.4 and ∼0.038 emu/g respectively. In the same time the coercive force Hc decreases from ∼120 to ∼80 Oe. For the BiFe1-х(Co1/2Ti1/2)хO3 system, a noticeably higher magnetic properties with a more complex dependence on x are observed. The maximum parameter values are observed at x = 0.04–0.05: MS = 0.83 and MR = 0.24 emu/g, Hc = 1.8 kOe. It is suggested that the detected anomalies of Co-containing solid solutions behavior are related to the one-ionic magnetocrystalline anisotropy of Co2+ cations. The BiFe1-х(M1/2Ti1/2)хO3 (M = Co, Ni) samples demonstrate piezoelectric constant d33 up to 7 pC/N. Due to the set of properties the materials obtained can be classified as high-temperature multiferroics.  相似文献   

19.
In this work, we have synthesized and characterized yttrium iron garnet nanoparticles doped with cobalt. The X-ray diffraction data showed a single phase, belonging to the cubic structure of Y3Fe5O12. Rietveld refinement revealed variation of the angles and interionic distances (Fe3+(a)-O2-Y3+(c) and Fe3+(d)-O2--Y3+(c) when Fe3+ ions are replaced by Co3+ ions in the tetrahedral (d) and octahedral (a) sites of YIG. In addition, the lattice parameter a, decreases from 12.3846?Å to 12.3830?Å with the increasing of cobalt concentration. The analysis by Infrared and Raman spectroscopies has shown a slight stretching at lower wave numbers as the dopant concentration increased. The magnetic measurements confirm the substitution of Fe3+ by Co3+ in the a-sites and d-sites with the reduction of the saturation magnetization from 26.63?emu/g to 24.92?emu/g, for 0.000?≤?y?≤?0.030. Changes in the coercive field varying the dopant concentration were related to the particle size and pinning centers existence.  相似文献   

20.
Fe(C) and Ni(C) nanocapsules with low carbon content have been produced via an arc discharge process in ethanol vapor. It is clarified by X-ray diffraction that the core of the Fe(C) nanocapsules consists of γ-Fe, α-Fe and Fe3C phase, while that of the Ni(C) nanocapsules contains only nickel. High-resolution transmission electron microscopy imaging confirms that these particles have a broad size distribution and the core/shell structure. Besides mutually independent nanocapsules with segregate graphitic shells, those with sharing shells are also observed in the Fe(C) nanocapsules. The remanence and the coercivity at room temperature of both the nanocapsules are higher than those of the corresponding microcrystallines, while the saturation magnetization is lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号