首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high degree of variety in customer demands causes mass production to become outdated and flexible production to be favored. Routing flexibility can be found in systems that implement general-purpose machines, alternative or identical machines, redundant machine tools, or the versatility of material handling systems. It is recognized that routing flexibility can be treated as a tool for enhancing system performance, such as lead time and inventory reduction. However, its implementation entails a huge cost of installation of flexible machines, automated tool changers and fixtures, and machine operators possessing multiple skills. Therefore, system managers must determine the appropriate level of routing flexibility for a specific system configuration in order to balance benefits and costs incurred. This paper presents a background to and a rational for a routing flexibility measure for a multi-stage flow shop. Instead of merely counting the number of available routes, this measure takes into account the loading balance between machines. Therefore, a manufacturing system with overloaded machines will have less routing flexibility as compared with one that is not overloaded, when both systems have the same number of available routes. An example for demonstrating the applicability of the proposed measure is also illustrated.  相似文献   

2.
The paper considers the loading problem in flexible manufacturing systems (FMSs). This problem involves the assignment to the machine tools of all operations and associated cutting tools required for part types that have been selected to be produced simultaneously. The loading problem is first formulated as a linear mixed 0–1 program with the objective to minimize the greatest workload assigned to each machine. A heuristic procedure is presented in which an assignment of operations to machine tools is obtained by solving a parameterized generalized assignment problem with an objective function that approximates the use of tool slots required by the operations assigned to the machines. The algorithm is coded in FORTRAN and tested on an IBM-compatible personal computer. Computational results are presented for different test problems to demonstrate the efficiency and effectiveness of the suggested procedure.  相似文献   

3.
Problems related to the flow management of a flexible manufacturing system (FMS) are here formulated in terms of combinatorial optimization. We consider a system consisting of several multitool automated machines, each one equipped with a possibly different tool set and linked to each other by a transportation system for part moving. The system operates with a given production mix.The focused flow-management problem is that of finding the part routings allowing for an optimal machine workload balancing. The problem is formulated in terms of a particular capacity assignment problem.With the proposed approach, a balanced solution can be achieved by routing parts on a limited number of different paths. Such a balancing routing can be found in polynomial time. We also give polynomial-time and-space algorithms for choosing, among all workload-balancing routings, the ones that minimize the global amount of part transfer among all machines.  相似文献   

4.
The dynamic nature of manufacturing makes rescheduling essential in today's complex production environment, particularly in flexible and re-configurable systems. Research on optimising schedules, which includes deadlock avoidance, is rather limited. Furthermore, the deadlock problem is mostly ignored in research on rescheduling. A rescheduling algorithm, that uses time petri-nets and the minimal siphons concept, was developed to deal with sources of disturbance such as machine breakdowns in real-time. The algorithm guarantees a deadlock-free new schedule. The existence of alternative routes, availability of material handling facilities and the limitation of buffer capacities were taken into consideration. The developed algorithm modifies only the affected portion of the original schedule, rather than rescheduling all jobs, in order to limit changes to the original schedule and reduce the impact on the response time.The effect of flexible routing, machine breakdowns, machine downtime, routing criterion and the use of the dispatching rule on the performance of manufacturing systems was studied. The systems performance was measured by the average flow time, the makespan and the average machine utilisation. The results indicate that utilising the system routing flexibility in real-time rescheduling, while avoiding deadlocks, improves system performance. Moreover, routing the interrupted operation to an alternative machine, based on the minimum expected completion time rather than the least utilised machine criterion, resulted in better performance.  相似文献   

5.
Despite their strategic potential, tool management issues in flexible manufacturing systems (FMSs) have received little attention in the literature. Nonavailability of tools in FMSs cuts at the very root of the strategic goals for which such systems are designed. Specifically, the capability of FMSs to economically produce customized products (flexibility of scope) in varying batch sizes (flexibility of volume) and delivering them on an accelerated schedule (market response time) is seriously hampered when required tools are not available at the time needed. On the other hand, excess inventory of tools in such systems represents a significant cost due to the expensive nature of FMS tool inventory. This article constructs a dynamic tool requirement planning (DTRP) model for an FMS tool planning operation that allows dynamic determination of the optimal tool replenishments at the beginning of each arbitrary, managerially convenient, discrete time period. The analysis presented in the article consists of two distinct phases: In the first phase, tool demand distributions are obtained using information from manufacturing production plans (such as master production schedule (MPS) and material requirement plans (MRP)) and general tool life distributions fitted on actual time-to-failure data. Significant computational reductions are obtained if the tool failure data follow a Weibull or Gamma distribution. In the second phase, results from classical dynamic inventory models are modified to obtain optimal tool replenishment policies that permit compliance with such FMS-specific constraints as limited tool storage capacity and part/tool service levels. An implementation plan is included.  相似文献   

6.
This paper considers a multi-objective machine cell problem, in which part types have several alternative part routings and the expected annual demand of each part type is known. This problem is characterised as optimally determining part type (routing) sets and corresponding machine cells such that total inter-cell part movements and total machine workload imbalances are simultaneously minimised. Due to the complexity of the problem, a two-stage heuristic algorithm is proposed, and computational experiments were conducted to verify the performance of the algorithm.  相似文献   

7.
Focused ion beam (FIB) sputtering is used to shape a variety of cutting tools with dimensions in the 15–100 μm range and cutting edge radii of curvature of 40 nm. The shape of each microtool is controlled to a pre-specified geometry that includes rake and relief features. We demonstrate tools having rectangular, triangular, and other complex-shaped face designs. A double-triangle tip on one tool is unique and demonstrates the versatility of the fabrication process. The FIB technique allows observation of the tool during fabrication, and, thus, reproducible features are generated with sub-micron precision. Tools are made from tungsten carbide, high-speed tool steel, and single crystal diamond. Application of FIB-shaped tools in ultra-precision microgrooving tests shows that the cross-section of a machined groove is an excellent replication of the microtool face. Microgrooves on 40–150 μm pitch are cut into 3 mm diameter polymer rods, for groove arc lengths greater than 12 cm. The surface finish of machined features is also reported; groove roughness (Ra) is typically less than 0.2 μm. Ultra-precision machining of cylindrical substrates is extended to make bound metal microcoils having feature sizes of 20–40 μm.  相似文献   

8.
In machining, the tool life is one of the limiting criteria in the process; therefore, the development of wear-resistant material for the cutting tools is imperative. This paper presents a methodological approach to the design of nano-scale multilayered-composite coatings for cutting tools. A plasma-enhanced technology of filtered cathodic vacuum-arc deposition is used to coat the tools, which significantly extends the operational life of the cutting tools. Here, a three-layered architecture of coatings is proposed and each layer has a specific function. The engineered structural layers allowed for optimum combination of a high adhesion strength with the tool substrate and a minimum adhesion of the work material to the tool surface. The coating process is presented here alongside with the technological role of the layers. A study of the effect of the developed nano-scale multilayer composite coatings on the rates of tool wear was undertaken, and results were compared with the wear rates of uncoated and standard coatings. The results of a wide range experimental work are given in terms of flank wear and tool life for various machining conditions.  相似文献   

9.
In this work a methodology is proposed for increasing the flexibility of the control software of Flexible Manufacturing Systems (FMSs). This greater flexibility is required due to factors such as uncertain product demand, uneven distribution of shop load, and machine or cutting tool unavailability. In the proposed framework the following modules were developed: (a) an automated process planning module which generates non-linear process plans for a given part, considering the shop floor resource availability; the non-linear plans include both material handling and material processing information; (b) a planning module that linearises the process plan aiming at minimising the total manufacturing time of the parts; (c) a NC program generation module, which generates the NC program for the chosen CNC machine(s). In order to increase the flexibility of the control software even more, a resource model was devised and implemented, which provides the necessary resource information for the above modules. Each of these modules is described within this paper, and details about the part and process plan representation necessary for this implementation are also given. A case study is presented in order to show the capability of the methodology.  相似文献   

10.
In this article we consider the problem of determining the minimum cost configuration (number of machines and pallets) for a flexible manufacturing system with the constraint of meeting a prespecified throughput, while simultaneously allocating the total workload among the machines (or groups of machines). Our procedure allows consideration of upper and lower bounds on the workload at each machine group. These bounds arise as a consequence of precedence constraints among the various operations and/or limitations on the number or combinations of operations that can be assigned to a machine because of constraints on tool slots or the space required to store assembly components. Earlier work on problems of this nature assumes that the workload allocation is given. For the single-machine-type problem we develop an efficient implicit enumeration procedure that uses fathoming rules to eliminate dominated configurations, and we present computational results. We discuss how this procedure can be used as a building block in solving the problem with multiple machine types.  相似文献   

11.
Tool force and deflection compensation for small milling tools   总被引:1,自引:0,他引:1  
A technique to compensate for deflection of small milling tools (diameter<1 mm) has been demonstrated. This open-loop technique involves predicting the cutting and thrust forces, applying these forces to the tool, calculating the shape error due to tool deflection and creating a new tool path to eliminate this error. The tool force model has evolved from a decade of research to predict the forces in diamond turning. This model was modified to include the effects of tool rotation in milling as well as the changes in contact area and force direction using a ball end mill to create a free form surface. Experimental measurements were made to corroborate the components of the tool forces in the cutting and thrust directions. The force model was then combined with tool stiffness to calculate the deflection of the tool as a function of the depth of cut, the up-feed per revolution and the geometry of the part. Two experiments were used to demonstrate the effectiveness of this error compensation technique—a slot and a large circular groove. Each experiment reduced the error due to tool deflection by an order of magnitude from 20–50 μm to 2–5 μm.  相似文献   

12.
Routing flexibility is a major contributor of the flexibility of a flexible manufacturing system (FMS). The present paper focuses on the evaluation of the routing flexibility of an FMS with the dynamic arrival of part types for processing in the system. A typical FMS configuration is chosen for detailed study and analysis. The system is set at five different levels of routing flexibility. Operations of part types can be processed on alternative machines depending upon the level of routing flexibility present in the system. Two cases have been considered with respect to the processing times of operations on alternative machines. A discrete-event simulation model has been developed to describe the operation of the chosen FMS. The performance of the system under various levels of routing flexibility is analyzed using measures such as mean flow time, mean tardiness, percentage of tardy parts, mean utilisation of machines, mean utilisation of automatic-guided vehicles, and mean queue length at machines. The routing flexibility for producing individual part types has been evaluated in terms of measures such as routing efficiency, routing versatility, routing variety and routing flexibility. The routing flexibility of the system has been evaluated using these measures. The flexibility levels are ranked based on the routing flexibility measure for the system. The ranking thus obtained has been validated with that derived using fuzzy logic approach.  相似文献   

13.
The increased use of flexible manufacturing systems to efficiently provide customers with diversified products has created a significant set of operational challenges for managers. Many issues concerning procedures and policies for the day-to-day operation of these systems still are unresolved. Previous studies in this area have concentrated on various problems by isolating or simplifying the systems under study. The primary objective of this study is to extend previous research by examining the effects of scheduling rules and routing flexibility on the performance of a constrained, random flexible manufacturing system (FMS). Other experimental factors considered are shop load, shop configuration, and system breakdowns. Within the bounds of this experiment, the results indicate that, in the presence of total routing flexibility, the effects of shop load, system breakdowns, and scheduling rules are significantly dampened. In particular, when total routing flexibility exists, the choice of scheduling rules is not critical. We also show that the behavior of scheduling rules in a more constrained FMS environment (i.e., where system breakdowns occur and material handling capability is limited) is consistent with the findings of previous research conducted under less constrained environments. Finally, results indicate that the shop configuration factor has little or no impact on a system's flow-time performance.  相似文献   

14.
This paper extends the traditional job shop scheduling problem (JSP) by incorporating the routing and scheduling decisions of the material handling equipment. It provides a generic definition and a mixed integer linear programming model for the problem considering the case of heterogeneous multiple-load material handling equipment. A constructive heuristic is developed for solving the problem. This heuristic is based on the well-known Giffler and Thompson’s algorithm for the JSP with modifications that account for the routing decisions of the material handling equipment and their effect on the start times of the manufacturing operations. Different dispatching rules are integrated into the heuristic, and experiments are conducted to study their effect on the makespan along with the determination of the computational time requirements of the developed heuristic.  相似文献   

15.
In automated production systems like flexible manufacturing systems (FMSs), an important issue is to find an adequate workload for each machine for each time period. Many integer linear programming (ILP) models have been proposed to solve the FMS loading problems, but not all of them take tools into account. Those that do not consider tooling are quite unrealistic, especially when setup times are important with respect to processing times. When tool loading has to be handled by the model, the load assignment may have to be changed completely.In this article we consider FMSs with a tool management of the following type: the system works in time periods whose durations are fixed or not; and tools are loaded on the machines at the beginning of each time period and stay there for the whole time period. Tool changes may occur only at the end of each time period when the system is stopped.We present some integer programming models for handling these situations with several types of objectives. Emphasis is laid on the ILP formulations. Computational complexities are discussed.  相似文献   

16.
In this paper a new model is developed to deal with a simultaneous dynamic cell formation and worker assignment problem (SDCWP). Part routing flexibility and machine flexibility and also promotion of workers from one skill level to another are considered. The proposed model is formulated as a single objective nonlinear integer programming which is converted to a linear one. The objective function consists of two separate components. The first part of the objective function is related to machine-based costs such as production cost, intercell material handling cost, machine costs in the planning horizon. The second part is related to human issues and consists of hiring cost, firing cost, training cost and salary. It is the first time that worker assignment and dynamic cell formation are considered simultaneously. To verify the performance of the proposed model, some numerical examples are presented. Computational and sensitivity analysis results imply the significance of SDCWP.  相似文献   

17.
Tool management is recognized as a critical issue in flexible manufacturing facilities management. This article addresses the issue of tool management in a flexible system installed in an avionics components factory. The system is composed of two machining centers equipped with local tool magazines of limited capacity. A tool handling system is in charge of tool movements between the tool room and the two machines. Each machine is able to perform any operation, provided that it is equipped with the suitable tool. In this kind of installation, tool allocation must be determined, and tool movements must be synchronized in order to minimize operating costs, or, equivalently, maximize the productivity of the system. We propose an approach to production planning based on a clustering algorithm, which takes into account the tool requirements of each part program in the production batch. We also propose two different heuristics for the scheduling problem. A case study was conducted on the facility mentioned above. Two conflicting objectives can be identified for this kind of production system: the reduction of tools to be shared among machines and the reduction of workload unbalance. The tests and comparison made demonstrate how the proposed procedure leads to superior results in terms of both objectives.  相似文献   

18.
This paper presents the results of a simulation study of a typical flexible manufacturing system that consists of seven machining centres, a loading and an unloading area, and six different part types. Owing to the existence of identical machining centres, the part types have alternative routings (their number varies between two and eight). One of the objectives of this work is to show how the following metaheuristics: ant colony optimisation, genetic algorithms, simulated annealing, tabu search, particle swarm optimisation and electromagnetism-like method, are adapted for solving the alternative routing selection problem in real time in order to reduce the congestion in the system by selecting a routing for each part among its alternative routings. The other goal is to highlight the impact of the real-time rescheduling of parts contained in the loading station on system performances when these metaheuristics are applied. The simulation results jugged by the production rate, machines and material handling utilisation rate show that for an overloaded system, the real-time rescheduling outperforms the case without rescheduling, but it has a negative impact on the work in process.  相似文献   

19.
Many optimization problems from the manufacturing systems are very complex in nature and quite hard to solve by conventional optimization techniques. The theme of this paper is to generate an active schedules and optimal sequence of job and tool that can meet minimum makespan schedule for the flexible manufacturing system. It consists of similar work center which is capable of doing many operations. The tools are stored in a common tool magazine that shares with and serves for several work centers to reduce the cost of duplicating tools in each and every work center. This type of manufacturing system is used for a manufacturing environment in which tools are expensive. To achieve the objective, the jobs and tools are sequenced and scheduled. In this work, non-traditional optimization technique such as ant colony optimization (ACO) algorithm are proposed to derive near-optimal solutions which adopt the Extended Giffler and Thompson algorithm for active feasible schedule generation. In this paper, the proposed algorithm is used for solving number of problems taken from the literature. The results available for the various existing algorithms are compared with results obtained by the ACO algorithm. The analysis reveals that ACO algorithm provides better solution with reasonable computational time.  相似文献   

20.
Design of Components and Layout of Machines for Material Handling   总被引:2,自引:2,他引:0  
Efficient material handling can reduce the amount of work in manufacturing operations. This paper discusses the design of components and the layout of machines from a material handling perspective. A way to reduce the material handling cost without compromising the component functionality is to choose satisfactory design options. The relationships between the design of the components and material handling are analysed to reduce the flow of material in a manufacturing system. In Model I, component routes are selected for a potential manufacturing system when only limited information regarding the layout of the machines is available. The selection of component routes is integrated with the determination of machine locations, the layout of single-row machines, and the layout of multi-row machines with equal areas, respectively, in Model II. Each problem is mathematically formulated and two algorithms are presented with illustrative examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号