首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为了研究转炉底吹气体对钢水终点氮质量分数影响,研究了迁钢210 t顶底复吹转炉底吹模式对转炉终点氮质量分数的影响,并基于钢液脱氮和吸氮理论对试验结果进行了分析。应用实践结果表明,随着铁水碳质量分数增加以及终点氧质量分数降低,终点氮质量分数逐渐降低;在铁水条件、副原料、转炉终点、底吹流量以及过程操作一致条件下,随着氮氩切换时间节点延长,钢液增氮量逐渐增加。当切换时间节点为吹氧比56%以内,底吹氮氩切换对终点钢水氮质量分数影响较小,当切换时间节点为吹氧比高于56%时,终点钢水氮质量分数增幅较大。  相似文献   

2.
分析了150 t转炉冶炼低氮品种钢的入炉原料,吹炼过程、脱氧合金化及钢包、出钢时间等对钢中氮含量的影响。控制转炉吹炼终点氧含量≤0.08%,采用氮气和氩气切换吹炼,控制补吹氧流量、先合金化再脱氧等方法,能够降低钢中的含氮量,提高了钢水质量。  相似文献   

3.
介绍了日本先进钢厂转炉吹炼末期钢中氮含量的控制技术,包括优化底吹工艺、吹炼末期造泡沫渣法、吹炼终点炉内正压法及提高入炉铁水比,这些方法都有利于将吹炼终点钢中氮含量控制在0.0015%以下。此外,对国内部分钢厂与日本先进钢厂的转炉吹炼终点钢中氮含量控制水平进行了对比。  相似文献   

4.
《特殊钢》2017,(2)
120 t转炉40炉工业试验的冶炼过程全程底吹氩,吹炼15%时钢中C含量为4.0%,炉渣成分为(/%):21.2FeO,2.6Al_2O_3,5.3MnO,31.2CaO,11.2MgO,23.7SiO_2,3.2P_2O_5,碱度1.3,吹炼终点钢中C含量0.1%,炉渣成分为(/%):14.5FeO,2.0Al_2O_3,3.9MnO,49.5CaO,8.0MgO,13.5SiO_2,2.2P_2O_5,碱度3.4。采用气体、成分分析和光学显微镜等方法研究了炉渣泡沫化程度对转炉钢液脱氮的影响,讨论了炉渣二次脱氮机理。分析得出,吹炼初期转炉钢液脱氮很微弱,脱氮主要集中在吹炼15%到80%的过程中,转炉吹炼末期钢液有所增氮。炉渣中存在金属液滴,炉渣泡沫化程度好,CO在炉渣中的停留时间长,CO与金属液滴的碰撞机会多,二次脱氮作用明显。入炉铁水N含量为53×10~(-6),炉渣泡沫化程度较好的炉次,转炉终点平均N含量13.7×10~(-6),平均脱氮率为74.2%;泡沫渣程度较差的炉次,转炉终点平均N含量为25.2×10~(-6),平均脱氮率为52.5%。  相似文献   

5.
工业纯铁要求钢中锰含量控制在0.005%以内,为了研究低锰钢冶炼工艺,对脱锰反应的热力学和动力学条件进行了分析。研究表明,钢水温度越低、炉渣氧化性越高、钢水氧含量越高、炉渣中氧化锰含量越低则锰的氧化反应越容易进行。当铁水锰含量在0.040%~0.055%时,将转炉吹炼后钢水终点碳含量控制在0.025%~0.035%,终点温度控制在1620℃以下,可将钢水残锰含量降低到0.04%~0.08%。钢水脱锰率随着转炉渣量的增加而升高。转炉出钢过程中不对钢水进行脱氧处理,钢包中的钢水和炉渣保持较高氧化性,在LF精炼处理过程中,可以使钢中锰含量平均降低32%,降幅为0.01~0.04个百分点。采用转炉和LF炉联合脱锰工艺,可稳定地将钢中锰含量降低到0.05%以内。  相似文献   

6.
前言武钢二炼钢冶炼低碳和超低碳钢比例占95%以上。众所周知,随着钢水终点含碳量的降低,钢中氧含量成倍的上升。根据我们用GLQX定氧探头和仪表系统测定终点钢水的结果,当T_终在1670~1680℃,〔C〕_终在0.10%左右时,钢中含氧量为600~800ppm,因此需要加入大量的铝才能保证达到连铸钢水要求的含氧量(镇静钢要求〔O〕<30ppm,沸腾钢要求〔O〕30~60ppm)。铝是国家的短线材料,高消耗不仅造成物质上的浪费,使钢的成本增加,而且使钢中Al_2O_3夹杂大幅度上升恶化了钢的质量。因此,多年来我们一直致力于在保证钢质的前提下如何降低铝的消耗的研究。  相似文献   

7.
本文主要讨论与分析了钢水中增氮的形成原因、钢水中增氮对钢水质量的危害,通过在转炉吹炼末期(80%左右)添加铁矿石或者氧化铁皮或者生白云石或者CaCO_3等造泡沫渣、控制出钢时间、钢包烘烤到位、采取增加中间包钢水中覆盖剂加入量和合理控制用于保护浇铸的氩气密封流量压力等措施,连铸基本控制住钢水中增氮现象,中碳钢SS400的氮含量都控制在50 ppm以下;低碳钢SPHC、SPHC-LB的氮含量都控制在40 ppm以下,完全达到了工艺技术要求。  相似文献   

8.
通过对首钢京唐公司转炉双联工艺超低氮钢生产过程中钢水氮含量数据的统计分析,探讨了影响钢中氮含量的因素和控制措施,为稳定控制钢中氮含量、提高钢的内在质量、减少成分不合格带来的损失提供改进方向。通过研究生产数据认为,要满足钢水质量对降氮要求,应采取措施控制TSC温度在1 635℃左右,炉渣脱磷率保证在70%以上,转炉终点氧含量在600 ppm以下。  相似文献   

9.
本文通过150t 转炉顶底复合吹炼试验,对底吹供氮强度的不同钢中氮含量的变化,以寻求经济合理的操作工艺,具体结果表明:采用两支底吹喷枪,全程供氮强度≤0.03Nm~3/min·t 时,终点钢中[N]含量为20~51ppm。平均为31.6ppm。比顶吹终点略高6ppm。若>0.03Nm~3/min·t时,终点钢中[N]含量比顶吹法明显增加。终点前置换 Ar 气,可使钢中[N]含量略低于顶吹,平均为23ppm,在上述供氮强度下,倒炉出钢间隔时间不大于20min 情况下,成品钢基本保证不大于标准规定80ppm。找出了适合150t 转炉的底吹氮、氮搅拌的操作规律。  相似文献   

10.
在首钢京唐钢铁联合有限责任公司"全三脱"铁水少渣冶炼工艺过程中,通过生产历史数据对影响钢水氮含量因素进行分析,结果表明:转炉顶枪漏氮对钢水增氮有很大影响;采用硅铁作为提温剂可以有效控制钢水w(N)在12×10-6左右;脱碳转炉采用全程底吹氩钢水w(N)可以降低3.3×10-6;转炉熔池内w(C)=0.3%~0.4%时,加入矿石可有效降低钢水氮含量;转炉后吹以及出钢时间越长,钢中氮含量越高;采取优化措施后,脱碳转炉出钢后,可稳定控制钢包内钢水w(N)≤15×10-6,达到了冶炼低氮钢的控制要求。  相似文献   

11.
刘平  何建中  史凤武 《包钢科技》2006,32(Z1):25-28
通过调查钢中含氮量异常增高的原因,从铁水开始,研究了炼钢生产过程中,入炉原材料的含氮量,复吹转炉的底吹工艺制度,LF炉精炼对钢水含氮量的影响.得出只有在钢包炉底吹过程中吹入氮气,才能使钢水的含氮量异常增高.按照这-结论,查出钢中异常氮含量是由转炉底吹系统中的氮气经连接阀反流到氩气管道中造成的.  相似文献   

12.
为有效控制SPHC钢中氮含量,德龙钢铁公司对冶炼工序中可能增氮的6个环节进行了研究,统计了炼钢工序各环节的氮含量,并对影响增氮的因素进行了分析。结果表明:转炉冶炼终点钢水氮含量波动较大是造成钢材氮含量超标的主要原因,其余工序增氮量较小,且波动较小。通过优化转炉冶炼工艺方案,工业化生产的成品材中氮含量稳定控制在35 ppm。  相似文献   

13.
马钢四钢轧300 t转炉底吹系统改造后,在炉役的前1000炉冶炼超低碳钢转炉终点碳氧积均值达到了0.0013.为了验证碳氧积的真实性,通过对此炉役同期生产的67炉超低碳钢转炉终点钢水及不脱氧出钢后钢包内钢水的碳、氧进行取样验证、转炉吹炼至平衡时烟气中CO浓度(体积含量)进行分析并通过理论计算,从理论上分析了在底吹惰性气体强度为0.12~0.20 m3/(min·t)时可以实现转炉终点碳氧积为0.0013.同时发现强底吹条件下生产超低碳钢,转炉出钢过程存在着降碳增氧的现象,且由于出钢过程的钢水温度下降,钢包钢水碳氧积均低于转炉终点碳氧积.  相似文献   

14.
赵喜伟  闫忠 《宽厚板》2014,(4):20-23
舞钢在没有铁水预脱磷设备的条件下,为了提高转炉钢冶炼前期的脱磷效率,结合转炉不同吹炼时期特点,通过生产实践,探索高磷铁水顶底复吹转炉双渣法冶炼工艺生产低磷钢的方法,确定了吹炼过程中合理的氧枪枪位和原料投放时机,总结出一倒时间、碱度、温度等关键操作制度,最终开发出直接利用高磷铁水生产低磷钢的转炉双渣法冶炼工艺技术,满足了低磷钢种对钢水洁净度的要求,达到了降本增效的目的。  相似文献   

15.
《炼钢》2010,(4)
介绍了日本钢厂在转炉吹炼末期钢中氮含量的控制技术。优化底吹工艺?吹炼末期造泡沫渣和吹炼终点的炉内正压法都有利于控制吹炼终点钢中氮质量分数小于15×10-6。此外,对比了国内钢厂与日本先进钢厂转炉吹炼终点钢中氮含量的控制水平。  相似文献   

16.
日本川崎钢铁公司提出了用大量含铁冷料炼钢的双联转炉炼钢法。将含铁冷料和含碳的物料装入到一座装有铁水或者经过预处理的铁水的转炉中,然后通过吹氧将含铁冷料熔化,以获得经预处理的、含碳量很高的铁水,然后将此铁水兑入到另一转炉中并按常规吹氧方法吹炼出合乎要求的钢水。  相似文献   

17.
本文综述我国氧气转炉炼钢的现状和发展。介绍了氧气转炉钢产量增长、钢水质量改善和扩大品种、提高炉龄、开发氧气转炉复合吹炼、冶炼过程计算机控制,以及中磷铁水和半钢冶炼工艺技术的成就和技术进步。对氧气转炉炼钢存在的问题进行了探讨,并提出了发展氧气转炉炼钢的建议。  相似文献   

18.
氧气瓶钢冶炼过程氮含量控制   总被引:1,自引:0,他引:1  
针对气瓶钢氮含量偏高,波动大,控制困难的问题,对炼钢工序全流程钢水中氮含量展开了调查.调查结果表明,转炉终点钢液氮含量偏高,增氮主要环节为转炉出钢过程和RH精炼结束到中包开浇.针对调查结果,提出了转炉低氮钢冶炼技术、出钢过程脱氧工艺优化及连铸保护浇注等技术措施,有效的降低了转炉终点氮含量,出钢增氮和浇注过程增氮也得到了有效的控制,使成品钢水中氮含量稳定控制在50×10-6以内,减小了氮对成品钢材性能的影响.  相似文献   

19.
对抚顺新钢铁公司顶吹转炉复合吹炼改造前后冶炼工艺效果的差异进行了对比研究,结果表明:顶底复合吹炼工艺在冶炼终点的碳、氧控制水平较好[终点碳含量为0.06%~0.10%时(质量分数,下同),碳氧积为0.0026~0.0029],终点炉渣组元结构组成方面较合理,终点钢水氮含量较低(约16×10-6)。采用复吹工艺后,转炉终...  相似文献   

20.
《特殊钢》2017,(1)
4.28%~5.02%C,0.19%~0.24%V铁水经提钒后的半钢成分为3.30%~3.80%C,≤0.037%V。"留渣+双渣"法为留上一炉渣,兑入提钒半钢和50~70 kg/t废钢加入石灰和白云石进行吹炼5~6 min,倒渣,并加入适量石灰和白云石继续吹炼至终点。结果表明,吹炼前期随着炉渣碱度或温度的增加,钢水脱磷率先增加后降低,而随着渣中(FeO)增加脱磷率先增加后稳定,前期最佳控制条件为炉渣碱度3.0~3.5,(FeO)10.0%~15.0%,倒渣温度1 480~1 510℃;转炉吹炼后期,随着炉渣碱度的增加脱磷率升高,而随着温度的增加脱磷率降低,(FeO)对脱磷率的影响与前期较为相近,转炉吹炼终点控制碱度3.5~4.0,(FeO)8.0%~10.0%,温度≤1630℃为宜,脱磷率在90.0%以上;此工艺可将钢水终点[P]控制在0.015%以内,满足低磷钢冶炼的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号