首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lamotrigine (3,5-diamino-6-[2,3-dichlorphenyl]-1,2,4-triazine) has been hypothesised to possess antiparkinsonian activity, by inhibiting the release of glutamate from basal ganglia neurones. This study therefore examined the motor effects of lamotrigine in naive and reserpine-treated mice and its interactions with dopaminergic agonists. In normal mice, lamotrigine (5-80 mg/kg i.p.) decreased spontaneous locomotor activity with high doses (> or = 40 mg/kg) causing moderately severe impairment to posture and gait. In mice treated 24 h beforehand with reserpine (5 mg/kg i.p.), lamotrigine (5-40 mg/kg i.p.) had no effect on akinesia by itself and did not alter the locomotion induced with the selective dopamine D1 receptor agonist 2,3,4, 5-tetrahydro-7,8-dihydroxy-1-phenyl-1 H-3-benzazepine hydrochloride (SKF 38393, 30 mg/kg i.p.). By contrast, motor responses to the dopamine D2 receptor-selective agonist N-n-propyl-N-phenylethyl-p-(3-hydroxyphenyl)ethylamine (RU 24213, 5 mg/kg s.c.) and to the dopamine precursor L-3,4-dihydroxyphenylalanine (L-DOPA, 150 mg/kg i.p. in the presence of benserazide, 100 mg/kg i.p.), were significantly potentiated by 10 and 40 mg/kg i.p. lamotrigine respectively. It is suggested that lamotrigine may enhance the antiakinetic action of L-DOPA in parkinson-like mice by increasing motor responding mediated by dopamine D2 but not dopamine D1 receptors. This interaction profile of lamotrigine with dopamine D1 and D2 receptor mechanisms is opposite to what one sees with antagonists of glutamate receptors.  相似文献   

2.
Caffeine (10-40 mg/kg, p.o.) enhanced locomotor activity (LA). Administration of GABA antagonist, bicuculline (0.5-1.0 mg/kg, i.p.), potentiated this caffeine-induced increase of LA, as well as LA of control rats. Treatment with the GABA agonist, muscimol (0.25-1 mg/kg, i.p.) or dopaminergic antagonist, haloperidol (0.25-1 mg/kg, i.p.) or muscarinic receptor blocker, atropine (3.75-5 mg/kg, i.p.), or inhibitor of acetylcholine esterase physostigmine (0.05-0.30 mg/kg, i.p.) or nicotine (0.5-1.5 mg/kg, i.p.) an nicotinic receptor agonist all decreased the LA of both caffeine-treated and control rats. Haloperidol-induced reduction in caffeine-induced increase in LA was found to be withdrawn with higher dose of caffeine. The dopamine agonist L-Dopa (75-150 mg/kg, p.o.) along with carbidopa (10 mg/kg, p.o.) increased the LA in control rats and potentiated the LA of caffeine treated rats. The haloperidol attenuated the bicuculline-induced increase in LA and atropine or physostigmine attenuated the bicuculline or L-Dopa + carbidopa-induced increase in LA in both caffeine treated and control rats when those drugs were administered concomitantly with bicuculline or L-Dopa+carbidopa. These results suggest that (a) the GABAergic system has direct role in the regulation of LA, and (b) caffeine potentiates LA by antagonism of the adenosine receptor and activation of the dopaminergic system which, in turn, reduces GABAergic activity through the reduction of cholinergic system.  相似文献   

3.
To investigate the in vivo functional interaction between phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP) binding sites and sigma receptors, we examined the effects of sigma receptor ligands on stereotyped head-weaving behavior induced by PCP, a putative PCP/sigma receptor ligand, and (+)-5-methyl-10,11-dihydroxy-5H-dibenzo(a,d)cyclo-hepten-5,10-imin e ((+)-MK-801; dizocilpine), a selective PCP binding site ligand, in rats. PCP (7.5 mg/kg, i.p.)-induced head-weaving behavior was inhibited by both N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine (NE-100; 0.03-1.0 mg/kg, p.o.), a selective sigma1 receptor ligand, and alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperidine butanol (BMY-14802; 3 and 10 mg/kg, p.o.), a prototype sigma receptor ligand, in a dose-dependent manner, whereas NE-100 (0.1-1.0 mg/kg, p.o.) and BMY-14802 (3 and 10 mg/kg, p.o.) did not inhibit dizocilpine (0.25 mg/kg, s.c.)-induced head-weaving behavior. These results suggest that NE-100 and BMY-14802 act via sigma receptors. Dizocilpine-induced head-weaving behavior was potentiated by 1,3-di-o-tolyl-guanidine (DTG; 0.03-0.3 microg/kg, i.v.) and (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP; 3 and 6 mg/kg, i.p.), sigma1/sigma2 receptor ligands, as well as by (+)-N-allyl-normetazocine ((+)-SKF-10,047: 8 mg/kg, i.p.), a sigma1 receptor ligand, while DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) did not induce this behavior. Potentiation of dizocilpine-induced head-weaving behavior by DTG (0.3 microg/kg, i.v.), (+)-3-PPP (6 mg/kg, i.p.) and (+)-SKF-10,047 (8 mg/kg, i.p.) was completely blocked by NE-100 (0.1 mg/kg, p.o.) and BMY-14802 (10 mg/kg, p.o.). These results suggest that PCP binding sites and sigma receptors are involved in PCP-induced head weaving behavior, and that sigma1 receptors play an important role in modulation of the head-weaving behavior.  相似文献   

4.
One week after a single administration of 3,4-methylenedioxymethamphetamine (MDMA HCI, 30 mg/kg i.p.), 5-HT1A receptor density was significantly increased by approximately 25-30% in the frontal cortex and hypothalamus of rats. The increased density correlated with the potentiation of the hypothermic response to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 1 mg/kg s.c.). Hypothalamic 5-HT7 receptors, which also bind 8-OH-DPAT, were not changed, however, by MDMA. Fluoxetine (5 mg/kg s.c.), ketanserin (5 mg/kg s.c.) or haloperidol (2 mg/kg i.p.), given 15 min prior to MDMA, prevented the depletion of 5-hydroxytryptamine (5-HT) induced by MDMA and also blocked the effects of this neurotoxin on 5-HT1A receptor density and on 8-OH-DPAT-induced hypothermia. The protection afforded by drugs against 5-HT loss did not correlate, however, with the antagonism of the acute hyperthermic effect of MDMA. The present results indicate that drugs able to prevent or to attenuate MDMA-induced 5-HT loss also prevent the changes in 5-HT1A receptor density as well as the enhanced hypothermic response to the 5-HT1A receptor agonist 8-OH-DPAT in MDMA-treated rats.  相似文献   

5.
Repeated oesophageal acidification is a definitive feature of gastro-oesophageal reflux disease, which in turn is caused by relaxation of the lower oesophageal sphincter (LOS). This study in anaesthetised ferrets investigates the reflex pathways involved in effects of oesophageal acidification on motor function of the LOS, with particular focus on the role of tachykinins. LOS pressure was monitored with a perfused micromanometric sleeve assembly. Oesophageal acidification reduced LOS pressure by 48 +/- 5% until washout with saline. This reduction became larger with repeated tests, and was unaffected in amplitude by acute bilateral vagotomy, although the response became slower in onset. Intra-oesophageal capsaicin (0.5% solution) caused a 68 +/- 17% decrease in LOS pressure which remained unchanged with repeated tests. The NK-1 receptor antagonist CP96,345 (1-5 mg/kg intravenous (i.v.) blocked the post-vagotomy LOS responses to both intra-luminal acid and capsaicin. Close intra-arterial (i.a.) injections of capsaicin (1-100 micrograms) gut induced LOS relaxation which was neither vagally nor NK-1 receptor-mediated. Substance P or the selective NK-1 receptor agonist [Sar9, Met(O2)11] substance P (25-500 ng close i.a.) caused a biphasic LOS response, consisting of initial brief contraction followed by prolonged, dose-dependent relaxation. Tetrodotoxin (10 micrograms/kg close i.a.) changed the biphasic response to substance P to excitation only. The neurokinin-1 (NK-1) receptor antagonist CP96,345 (0.3-10 mg/kg i.v.) dose-dependently reduced the inhibitory response to substance P. The excitatory phase of the response to substance P was larger and prolonged after guanethidine (5 mg/kg, i.v.), or propranolol (1 mg/kg, i.v.). L-NAME (100 mg/kg i.v.) reduced the inhibitory phase. The selective NK-2 receptor agonist [beta-Ala8] neurokinin A(4-10) caused LOS excitation only. These data indicate that intra-oesophageal acid causes substance P release from extrinsic afferent nerve endings which activates local inhibitory pathways to the LOS via NK-1 receptors.  相似文献   

6.
The antiemetic effects of six serotonergic 5-HT1A-receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetrarin (8-OH-DPAT), 4-(4-[4-(2-pyrimidinyl)piperazin-1-yl]butyl)-2,3,4,5- tetrahydro-1,4-benzoxazepine-3,5-dione (SUN8399), buspirone, gepirone, ipsapirone and tandospirone, against motion sickness were investigated in Suncus murinus. Subcutaneous injection of all six agonists completely and dose-dependently suppressed motion-induced emesis. Pretreatment with 8-OH-DPAT or SUN8399 dose-dependently inhibited emesis elicited by nicotine (4.0 mg/kg, s.c.), veratrine (0.7 mg/kg, s.c.), cisplatin (20 mg/kg, i.p.) and copper sulfate (40 mg/kg, p.o.). These results suggest that serotonergic 5-HT1A-receptor agonists are effective as anti-motion sickness drugs, and these drugs may block a common mechanism(s) for the emetic reflex of the suncus because the antiemetic effects of the 5-HT1A-receptor agonists were exerted irrespective of the stimulus.  相似文献   

7.
The administration of the 5-hydroxytryptamine (5-HT) precursor 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.), in combination with an inhibitor of peripheral 5-HTP decarboxylase, produced a dose-dependent increase in the ejaculation latency of male rats, and this effect was enhanced by additional treatment with the 5-HT1 receptor antagonist (-)-pindolol (2 mg/kg s.c.). The 5-HT2A/C receptor agonist (+/-) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.125-0.5 mg/kg s.c.) did not by itself affect male ejaculatory behavior, but additional treatment with (-)-pindolol (2 mg/kg s.c.) produced a dose-dependent decrease in number of ejaculating animals. The increased ejaculation latency produced by 5-HTP was fully antagonized by treatment with the 5-HT1B receptor antagonist isamoltane (4 mg/kg s.c.), but not by ritanserin (2 mg/kg s.c.) treatment. The selective 5-HT1A receptor antagonist WAY-100635 (0.15 mg/kg s.c.) enhanced the inhibitory actions of 5-HTP on the male rat ejaculatory behavior, and this dose of WAY-100635 fully antagonized 8-OH-DPAT-induced facilitation (0.25 mg/kg s.c.) of the ejaculatory behavior. WAY-100635 (0.04-0.60 mg/kg s.c.) did not, by itself, significantly affect male rat sexual behavior. Taken together, the results suggest an inhibitory role for postsynaptic 5-HT1B receptors in the effects produced by 5-HTP on male rat ejaculatory behavior. Furthermore, 5-HTP-induced inhibition of male rat ejaculatory behavior is partially controlled by stimulation of inhibitory 5-HT1A autoreceptors, since the effects of 5-HTP were accentuated by treatment with (-)-pindolol, as well as by the more selective 5-HT1A receptor antagonist WAY-100635.  相似文献   

8.
The present study used a three-choice operant drug discrimination procedure to determine if NMDA-mediated discriminative stimulus effects could be separated from other stimulus effects of 2.0 g/kg ethanol. Adult male Long-Evans rats (n = 7) were trained to discriminate dizocilpine (0.17 mg/kg; i.g.) from ethanol (2.0 g/kg; i.g.) from water (4.7 ml; i.g.) using food reinforcement. Substitution tests were conducted following administration of the GABA(A) positive modulators allopregnanolone (5.6-30.0 mg/kg; i.p.), diazepam (0.3-10.0 mg/kg; i.p.) and pentobarbital (1.0-21.0 mg/kg; i.p.), the non-competitive NMDA antagonist phencyclidine (0.3-10.0 mg/kg; i.p.), the 5-HT1 agonists TFMPP (0.3-5.6 mg/kg; i.p.) and RU 24969 (0.3-3.0 mg/kg; i.p.), and isopropanol (0.10-1.25 g/kg; i.p.). Allopregnanolone, diazepam and pentobarbital substituted completely (>80%) for ethanol. Isopropanol partially (77%) substituted for ethanol. Phencyclidine substituted completely for dizocilpine. RU 24969 and TFMPP did not completely substitute for either training drug, although RU 24969 partially (62%) substituted for ethanol. Successful training of this three-choice discrimination indicates that the discriminative stimulus effects of 0.17 mg/kg dizocilpine were separable from those of 2.0 g/kg ethanol. The finding that attenuation of NMDA-mediated effects of ethanol occurred without altering significantly GABA(A)- and 5-HT1-mediated effects suggests that the NMDA component may be independent of other discriminative stimulus effects of 2.0 g/kg ethanol.  相似文献   

9.
AIM: To evaluate the effects of various doses of lintopride, a new 5HT-4 antagonist with moderate 5HT-3 antagonist properties, on oesophageal body and lower oesophageal sphincter (LOS) motility in humans. METHODS: Eight healthy male volunteers, mean age 22 (19-28) years, without any history of digestive disease or chest pain, were randomized to three doses of lintopride (0.1, 0.3 and 0.5 mg/kg i.v.) and a placebo at 1-week intervals in a double-blind, crossover study. Oesophageal motility was recorded continuously for 4 h after each dose, using perfused catheters inserted at the level of the LOS and in the body of the oesophagus, at 5, 10 and 15 cm from the LOS. Peristalsis was studied during 10 wet swallows, at 30-min intervals (T0-T240 min). RESULTS: The LOS basal pressure (23.3 +/- 2.0 cmH2O; mean +/- s.d.) remained stable after dosing with placebo to T240. After lintopride, LOS basal pressure increased significantly vs. placebo (AUC comparison: 0.1 mg/kg, P = 0.036; 0.3 mg/kg, P = 0.027; 0.5 mg/kg, P = 0.052). In contrast, the duration and extent of LOS relaxation after swallowing was not affected by any of the three doses of lintopride. The amplitude of peristaltic waves in the oesophagus increased significantly at T30 after lintopride 0.3 mg/kg (34.5 cmH2O, P = 0.020) and 0.5 mg/kg (32.5 cmH2O, P = 0.027), at T60 after 0.3 mg/kg (48.8 cmH2O, P = 0.0009) and 0.5 mg/kg (29.1 cmH2O, P = 0.029) and at T90 after 0.3 mg/kg (34.5 cmH2O, P = 0.0018). CONCLUSIONS: Lintopride significantly increased the LOS basal tone without affecting LOS physiological relaxation after swallowing. Peristaltic waves were also enhanced by lintopride.  相似文献   

10.
This review reports on the pharmacodynamics of the new antipsychotic risperidone. The primary action of risperidone is serotonin 5-HT2 receptor blockade as shown by displacement of radioligand binding (Ki: 0.16 nM), activity on isolated tissues (EC50: 0.5 nM), and antagonism of peripherally (ED50: 0.0011 mg/kg) and centrally (ED50: 0.014 mg/kg) acting 5-HT2 receptor agonists in rats. Risperidone is at least as potent as the specific 5-HT2 receptor antagonist ritanserin in these tests. Risperidone is also a potent dopamine D2 receptor antagonist as indicated by displacement of radioligand binding (Ki: 1.4 nM), activity in isolated striatal slices (IC50: 0.89 nM), and antagonism of peripherally (ED50: 0.0057 mg/kg in dogs) and centrally acting D2 receptor agonists (ED50: 0.056-0.15 mg/kg in rats). Risperidone shows all effects common to D2 antagonists, including enhancement of prolactin release. However, some central effects such as catalepsy and blockade of motor activity occur at high doses only. Risperidone is 4-10 times less potent than haloperidol as a central D2 antagonist in rats and it differs from haloperidol by the following characteristics: predominant 5-HT2 antagonism; LSD antagonism; effects on sleep; smooth dose-response curves for D2 antagonism; synergism of combined 5-HT2/D2 antagonism; pronounced effects on amphetamine-induced oxygen consumption; increased social interaction; and pronounced effects on dopamine (DA) turnover. Risperidone displays similar activity at pre- and postsynaptic D2 receptors and at D2 receptors from various rat brain regions. The binding affinity for D4 and D3 receptors is 5 and 9 times weaker, respectively, than for D2 receptors; interaction with D1 receptors occurs only at very high concentrations. The pharmacological profile of risperidone includes interaction with histamine H1 and alpha-adrenergic receptors but the compound is devoid of significant interaction with cholinergic and a variety of other types of receptors. Risperidone has excellent oral activity, a rapid onset, and a 24-h duration of action. Its major metabolite, 9-hydroxyrisperidone, closely mimics risperidone in pharmacodynamics. Risperidone can be characterized as a potent D2 antagonist with predominant 5HT2 antagonistic activity and optimal pharmacokinetic properties.  相似文献   

11.
The present study was designed to evaluate the roles of 5-HT2 and 5-HT3 receptors in the mouse forced swimming test, by using selective agonists and antagonists of 5-HT(2A/C) and 5-HT3 receptor sites. Agonists/antagonists and antidepressants were administered 45 min and 30 min, respectively, prior to testing. Pretreatment with (+/-)-2,5-dimethoxy-4-iodoamphetamine (DOI) (4 mg/kg, i.p.) or 2-methyl-5-HT (4 mg/kg, i.p.) had no effect on the anti-immobility effects of any antidepressant tested. Prior administration of ritanserin (4 mg/kg, i.p.) or ketanserin (8 mg/kg, i.p.), on the other hand, potentiated the effects of sub-active doses of imipramine (8 mg/kg, i.p.) and desipramine (16 mg/kg, i.p.) but not of maprotiline (8 mg/kg, i.p.), fluoxetine (16 mg/kg, i.p.), citalopram (16 mg/kg, i.p.) or fluvoxamine (8 mg/kg, i.p.). Pretreatment with ondansetron (1 X 10(-5) mg/kg, i.p.) enhanced the antidepressant-like effects of sub-active doses of the selective serotonin reuptake inhibitors. The results of the present study suggested that, in the forced swimming test, the selective serotonin reuptake inhibitors act partially through 5-HT3 receptor sites, whereas the tricyclic antidepressants exert effects at 5-HT(2A/C) receptor sites. Anti-immobility effects of the selective noradrenaline reuptake inhibitor, maprotiline, do not seem to be mediated by 5-HT(2A/C) or 5-HT3 receptor function.  相似文献   

12.
BACKGROUND: The purpose of this study was to confirm the preventive effect of ritodrine hydrochloride (ritodrine) alone or ritodrine plus urinary trypsin inhibitor (UTI) in a mouse model of preterm delivery. METHODS: On day 17 of pregnancy, female C3H/HeN mice impregnated by male B6D2F1 mice were given two intraperitoneal injections of lipopolysaccharide (LPS) (50 micrograms/kg) at a 3-hour interval, which induced a 100% incidence of preterm delivery within 25 hours of the second dose. Ritodrine (1, 3, or 10 mg/kg, p.o.), UTI (25 X 10(4) units/kg, i.p.), ritodrine (3 mg/kg, p.o.) plus UTI (25 x 10(4) units/kg, i.p.), distilled water (10 ml/kg, p.o.), or distilled water (10 mg/kg, p.o.) plus saline solution (10 ml/kg, i.p.) were administered to the pregnant animals 10 times at 1-hour intervals from 8:00 AM to 5:00 PM on day 18 of pregnancy. In addition, the preventive effect of ritodrine, UTI, or ritodrine plus UTI was examined on LPS-induced contraction of uterine muscle strips isolated from pregnant mice on day 17 of gestation. RESULTS: The incidence of preterm delivery decreased significantly in a dose-dependent fashion with ritodrine treatment, and there was a significant and synergistic decrease after combined treatment with ritodrine plus UTI. The in vitro uterine contraction induced by LPS was significantly suppressed by both ritodrine and UTI. CONCLUSIONS: Combination therapy with ritodrine plus UTI may be helpful for preventing preterm delivery in humans without the cardiovascular side effects that often accompany treatment with ritodrine alone.  相似文献   

13.
1. It has been hypothesized that 5-HT1A autoreceptor antagonists may enhance the therapeutic efficacy of SSRIs and other antidepressants. Although early clinical trials with the beta-adrenoceptor/5-HT1 ligand, pindolol, were promising, the results of recent more extensive trials have been contradictory. Here we investigated the actions of pindolol at the 5-HT1A autoreceptor by measuring its effect on 5-HT neuronal activity and release in the anaesthetized rat. 2. Pindolol inhibited the electrical activity of 5-HT neurones in the dorsal raphe nucleus (DRN). This effect was observed in the majority of neurones tested (10/16), was dose-related (0.2-1.0 mg kg(-1), i.v.), and was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg(-1), i.v.), in 6/7 cases tested. 3. Pindolol also inhibited 5-HT neuronal activity when applied microiontophoretically into the DRN in 9/10 neurones tested. This effect of pindolol was current-dependent and blocked by co-application of WAY 100635 (3/3 neurones tested). 4. In microdialysis experiments. pindolol caused a dose-related (0.8 and 4 mg kg(-1), i.v.) fall in 5-HT levels in dialysates from the frontal cortex (under conditions where the perfusion medium contained 1 microM citalopram). In rats pretreated with WAY 100635 (0.1 mg kg(-1), i.v.), pindolol (4 mg kg(-1), i.v.) did not decrease, but rather increased 5-HT levels. 5. We conclude that, under the experimental conditions used in this study, pindolol displays agonist effects at the 5-HT1A autoreceptor. These data are relevant to previous and ongoing clinical trials of pindolol in depression which are based on the rationale that the drug is an effective 5-HT1A autoreceptor antagonist.  相似文献   

14.
The activation of rat mesocortical dopaminergic (DA) neurons evoked by the electrical stimulation of the ventral tegmental area (VTA) induces a marked inhibition of the spontaneous activity of prefrontocortical cells. In the present study, it was first shown that systemic administration of either clozapine (a mixed antagonist of D1, D2, and alpha1-adrenergic receptors) (3-5 mg/kg, i.v.), prazosin (an alpha1-adrenergic antagonist) (0.2 mg/kg, i.v.), or sulpiride (a D2 antagonist) (30 mg/kg, i.v.), but not SCH 23390 (a D1 antagonist) (0.2 mg/kg, i.v.), reversed this cortical inhibition. Second, it was found that following the systemic administration of prazosin, the VTA-induced cortical inhibition reappeared when either SCH 23390 or sulpiride was applied by iontophoresis into the prefrontal cortex. Third, it was seen that, whereas haloperidol (0.2 mg/kg, i.v.), a D2 antagonist which also blocks alpha1-adrenergic receptors, failed to reverse the VTA-induced inhibition, the systemic administration of haloperidol plus SCH 23390 (0.2 mg/kg, i.v.) blocked this inhibition. Finally, it was verified that the cortical inhibitions obtained following treatments with either "prazosin plus sulpiride" or "prazosin plus SCH 23390" were blocked by a superimposed administration of either SCH 23390 or sulpiride, respectively. These data indicate that complex interactions between cortical D2, D1, and alpha1-adrenergic receptors are involved in the regulation of the activity of prefrontocortical cells innervated by the VTA neurons. They confirm that the physiological stimulation of cortical alpha1-adrenergic receptors hampers the functional activity of cortical D1 receptors and suggest that the stimulations of cortical D1 and D2 receptors exert mutual inhibition on each other's transmission.  相似文献   

15.
AIM: To verify whether (+/-) 12-chloroscoulerine (CSL) is antagonist or agonist effect to D2 autoreceptors. METHODS: The levodopa content accumulated in the rat striatum was measured by HPLC-ECD, and the DA neuron firing activity in the substantia nigra zona compacta (SNC) was recorded. RESULTS: The accumulated levodopa content induced by CSL 40 mg.kg-1 was much more than that of 1,4-butyro-lactone (BL) group (P < 0.01). After i.p. injection of apomorphine (Apo) 5 mg.kg-1, the levodopa content was decreased below that of BL group (P < 0.05). The Apo inhibition on levodopa content was completely reversed by CSL (40 mg.kg-1, i.p.) and then increased the levodopa content (2.5 +/- 1.1 micrograms.g-1) over that of Apo group (0.7 +/- 0.3 microgram.g-1, P < 0.01). In the electrophysiologic recording, Apo (15 micrograms.kg-1, i.v.) induced the decrease of SNC DA cell firing rate nearly to zero. At the accumulated dose of CSL up to 80 micrograms.kg-1 (i.v.), the inhibition of Apo was attenuated and the firing activity was restored to predrug level. CONCLUSION: CSL showed an antagonistic action, an action to D2 autoreceptors.  相似文献   

16.
This study analyses the anti-hyperalgesic properties of the hydroalcoholic extract (HE) and the sesquiterpene polygodial isolated from the barks of Drymis winteri (Winteraceae). The HE (10 to 60 mg kg(-1), i.p. or 100 to 600 mg kg(-1), p.o.), 4 h prior, produced significant inhibition of abdominal constrictions caused by i.p. injection of acetic acid, kaolin and zymosan in mice. The mean ID50s were: 21.4, 33.7 and 36.6 mg kg(-1); 173.0, 123.0 and 366.0 mg kg(-1), by i.p. and by oral route, respectively. This effect lasted for up to 8 h. The HE at the same range of doses produced dose-related inhibition of both phases of the formalin-induced licking. The calculated mean ID50s values for the early phase were: 26.1 and 43.0 mg kg(-1), while for the late phase they were 7.3 and 72.7 mg kg(-1), respectively, when given by i.p. and by oral route. The HE (10 to 60 mg kg(-1), i.p. or 25 to 200 mg kg(-1), p.o.), 4 h prior, produced significant inhibition of capsaicin-induced neurogenic pain with mean ID50 values of 18.0 and 68.0 mg kg(-1), respectively. The HE (3 to 100 mg kg(-1), p.o., 1 h) inhibited in a graded manner, the hyperalgesia induced by bradykinin (3 nmol/paw) or substance P (10 nmol/paw) in rat paw, with mean ED50 values of 54.5 and 53.7 mg kg(-1), respectively. However, the HE did not affect the hyperalgesia induced by carrageenan or PGE2. When assessed in the hot-plate test, the HE (200 mg kg(-1), p.o.) was inactive. Naloxone (1 mg kg(-1), i.p.) significantly reversed the antinociceptive effects caused by either morphine (5 mg kg(-1), s.c.) or by HE (60 mg kg(-1), i.p.). Polygodial (0.1 to 10 mg kg(-1), i.p.) produced significant inhibition of acetic acid, kaolin and zymosan-induced writhing in mice, being about 14 to 27-fold more potent than the HE at the ID50 level. Together these data provide support for a long-lasting anti-hyperalgesic property for the active principle(s) present in the barks of D. winteri when assessed in several models of inflammatory or neurogenic pain. Its actions involve, at least in part, an interaction with opioid pathway through a naloxone-sensitive mechanism, seeming not to be related with a non-specific peripheral or central depressant actions. Finally, the sesquiterpene polygodial isolated from this plant, appears to be mainly responsible for the anti-hyperalgesic properties of the extract.  相似文献   

17.
Effect of 3, 4-dihydroxyphenylserine (DOPS), a norepinephrine precurosr, on harmaline tremor was investigated in mice to elucidate the role of norepinephrine in the genesis of tremor. 1) Spontaneous motor activity was inhibited by L-threo-DOPS (200 mg/kg i.p.). 2) Tremor induced by harmaline (5 and 7 mg/kg i.p.) was enhanced by alpha-methyl-p-tyrosone (200 mg/kg i.p.). 3) The development and duration of tremor induced by harmaline (10 mg/kg i.p.) were inhibited significantly in a dose dependent manner by L-threo-DOPS (50, 70, 100, 150 and 200 mg/kg i.p.), but neither by D-threo-DOPS (200 mg/kg i.p.) nor DL-erythro-DOPS (200 mg/kg i.p.). 4) L-threo-DOPS (200 mg/kg i.-.) had no effect on the development of tremor induced by tremorine (5 and 10 mg/kg i.p.), while lacrimation and diarrhea caused by tremorine was markedly inhibited. 5) Administration of harmaline (10 mg/kg i.p.) produced an increase in brain 5-hydroxytryptamine content but not in that of norepinephrine. Administration of L-threo-DOPS (100 mg/kg i.p.) increased the norepinephrine content but not the 5-hydroxytryptamine content in the brain. Inhibition of harmaline tremor induced by L-threo-DOPS is attributed to the L-norepinephrine converted from L-threo-DOPS and the involvement of a noradrenergic mechanism in harmaline tremor has to be considered.  相似文献   

18.
Effects of clonidine on blood pressure, heart rate and rectal temperature in conscious rats were examined. Clonidine (0.1-1 mg/kg s.c.) caused a prevailing pressor response and dose-dependently a fall in heart rate and body temperature. The pressor response to clonidine (0.3 mg/kg s.c.) was completely reduced by phentolamine (10 mg/kg s.c.), chlorpromazine (10 mg/kg s.c.) but not by hexamethonium (30 mg/kg i.p.), guanethidine (30 mg/kg s.c.) or reserpine (5 mg/kg s.c. 18 hr + mg/kg i.p. 4 hr prior to clonidine). Conversely, a remarkable potentiation of the pressor response to clonidine was observed after treatment with reserpine. The bradycardia with clonidine (0.3 mg/kg s.c.) was significanlty reduced by phentolamine, chlorpromazine or atropine (5 mg/kg s.c.) but was potentiated by reserpine. The hypothermia with clonidine (0.3 mg/kg s.c.) was not influenced by phentolamine or atropine but was significanlty potentiated by chlorpromazine. From the above results it is suggested that the prevailing pressor response to clonidine in conscious rats is due to a stimulation of peripheral alpha-adrenoceptors, the bradycardia with clonidine is exerted through the sympathetic pathway and the baroceptor-vagal reflex, and that the hypothermia with clonidine is mainly due to the central mechanism.  相似文献   

19.
BACKGROUND: Our laboratory has previously shown that delta-opioid receptors are involved in the cardioprotective effect of ischemic preconditioning in the rat heart. However, this class of receptors consists of two subtypes, delta1, and delta2, and mu- or kappa-opioid receptors may also exist in the heart. Therefore, the purpose of the present study was to test the hypothesis that ischemic preconditioning is mediated through stimulation of one or both delta-opioid receptor subtypes. METHODS AND RESULTS: Anesthetized, open chest, male Wistar rats were assigned to 1 of 14 groups. All animals were subjected to 30 minutes of occlusion and 2 hours of reperfusion. Ischemic preconditioning was elicited by three 5-minute occlusion periods interspersed with 5 minutes of reperfusion. Two doses of 7-benzylidenenaltrexone (BNTX; 1 and 3 mg/kg i.v.), a selective delta1-opioid receptor antagonist, or naltriben (NTB; 1 and 3 mg/kg i.v.), a selective delta2-opioid receptor antagonist, were given before ischemic preconditioning. To test for a role of mu-opioid receptors, rats were pretreated with beta-funaltrexamine (beta-FNA; 15 mg/kg s.c), an irreversible mu-opioid receptor antagonist, 24 hours before ischemic preconditioning or given the mu-opioid receptor agonist D-Ala,2N-Me-Phe,4glycerol5-enkephalin (DAMGO) as three 5-minute infusions (1, 10, and 100 microg/kg per infusion i.v., respectively) interspersed with 5-minute drug-free periods before the prolonged ischemic and reperfusion periods (lowDAMGO, medDAMGO, and hiDAMGO, respectively). The involvement of kappa-opioid receptors was tested by administering one of two doses of nor-binaltorphimine (nor-BNI; 1 and 5 mg/kg i.v.) before ischemic preconditioning. Infarct size (IS) as a percent of the area at risk (AAR) was measured by triphenyltetrazolium stain. Ischemic preconditioning markedly reduced IS/AAR (14+/-4%, P<.05) compared with control (55+/-4%). NTB, beta-FNA, and nor-BNI were unable to block the cardioprotective effect of ischemic preconditioning. In addition, DAMGO had no effect on IS/AAR. However, the high dose of BNTX (3 mg/kg i.v.) significantly attenuated the cardioprotective effect of ischemic preconditioning (39+/-5%; P<.05 versus control and ischemic preconditioning). CONCLUSIONS: These results indicate that delta1-opioid receptors play an important role in the cardioprotective effect of ischemic preconditioning in the rat heart.  相似文献   

20.
Cataleptogenic effects of haloperidol (1 mg/kg i.p.) in rats was antagonized by caffeine and theophylline (10-50 mg/kg i.p.), and by selective adenosine A2 receptor antagonist (3,7-dimethyl-1-propargylxanthine) (3 and 6 mg/kg i.p.). Selective A1-adenosine receptor antagonist (8-cyclopentyltheophylline) (1.5 and 3 mg/kg i.p.) was not able to reduce this effect of haloperidol. These results confirm the antagonistic interaction between adenosine A2A and dopamine D2 receptors, and suggest the involvement of adenosine A2 receptors in the mechanisms of catalepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号