首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell-free systems for the analysis of Golgi apparatus membrane traffic rely either on highly purified cell fractions or analysis by specific trafficking markers or both. Our work has employed a cell-free transfer system from rat liver based on purified fractions. Transfer of any constituent present in the donor fraction that can be labeled (protein, phospholipid, neutral lipid, sterol, or glycoconjugate) may be investigated in a manner not requiring a processing assay. Transition vesicles were purified and Golgi apparatus cisternae were subfractionated by means of preparative free-flow electrophoresis. Using these transition vesicles and Golgi apparatus subfractions, transfer between transitional endoplasmic reticulum and cis Golgi apparatus was investigated and the process subdivided into vesicle formation and vesicle fusion steps. In liver, vesicle formation exhibited both ATP-independent and ATP-dependent components whereas vesicle fusion was ATP-independent. The ATP-dependent component of transfer was donor and acceptor specific and appeared to be largely unidirectional, i.e., ATP-dependent retrograde (cis Golgi apparatus to transitional endoplasmic reticulum) traffic was not observed. ATP-dependent transfer in the liver system and coatomer-driven ATP-independent transfer in more refined yeast and cultured cell systems are compared and discussed in regard to the liver system. A model mechanism developed for ATP-dependent budding is proposed where a retinol-stimulated and brefeldin A-inhibited NADH protein disulfide oxidoreductase (NADH oxidase) with protein disulfide-thiol interchange activity and an ATP-requiring protein capable of driving physical membrane displacement are involved. It has been suggested that this mechanism drives both the cell enlargement and the vesicle budding that may be associated with the dynamic flow of membranes along the endoplasmic reticulum-vesicle-Golgi apparatus-plasma membrane pathway.  相似文献   

3.
1. Postmitochondrial supernatants were prepared from the livers of chick embryos and were incubated under conditions that supported protein synthesis. delta-Aminolaevulinate synthase (EC 2.3.1.37) was synthesized by supernatants from livers treated with the porphyrinogenic drugs 2-allyl-2-isopropylacetamide and/or 3,5-diethoxycarbonyl-1,4-dihydrocollidine, but synthesis by supernatants from normal livers could not be detected. Synthesis of enzyme released from polyribosomes was measured by immunoprecipitation with specific antibody to the mitochondrial enzyme, and the specificity of the reaction was established by electrophoresis of dissociated immunoprecipitates on sodium dodecyl sulphate/polyacrylamide gels. 2. The relative synthesis of delta-aminolaevulinate synthase in vitro was comparable with that previously measured in vivo, and was correlated with the enzyme activity of the liver. 3. Enzyme synthesis in vitro occurred predominantly on free rather than membrane-bound polyribosomes. 4. The mol.wt. of the product synthesized in vitro was 7000 +/- 7000 by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. However, pulse-labelling of the enzyme in vivo confirmed its mol.wt. to be 49000 +/- 5000 when isolated from the mitochondrion. A small amount of immunoprecipitable enzyme of mol.wt. 70000 was detected in the cytosol in vivo. In chick embryo liver, delta-aminolaevulinate synthase therefore appears to be synthesized on cytoplasmic polyribosomes as a polypeptide of mol.wt. 70000, which in vivo is rapidly incorporated into the mitochondrion, and is then extracted as a lower-molecular-weight form. 5. Haemin added to the postmitochondrial supernatant-containing incubation mixture at concentrations up to 10 muM had no effect on general protein synthesis or the synthesis of delta-aminolaevulinate synthase. On the other hand, haemin treatment of induced chick embryo livers in vivo for 3h markedly decreased the relative synthesis of delta-aminolaevulinate synthase in vitro. These results suggest that haemin represses the synthesis of delta-aminolaevulinate synthase by decreasing the amount of mRNA for the enzyme available for translation.  相似文献   

4.
Glycosylation of glycoproteins, proteoglycans, and glycosphingolipids occurs mainly in the lumen of the endoplasmic reticulum and the Golgi apparatus. Nucleotide sugars, donors of all the sugars involved in Golgi glycosylation reactions, are synthesized in the cytoplasm and require specialized transporters to be translocated into the lumen of the Golgi apparatus. By controlling the supply of sugar nucleotides in the lumen of the Golgi apparatus, these transporters directly regulate the glycosylation of macromolecules transiting the Golgi. We have identified and purified the rat liver Golgi membrane UDP-N-acetylgalactosamine transporter. The transporter was purified to apparent homogeneity by a combination of conventional and dye color chromatography. An approximately 63,000-fold purification (6% yield) was achieved starting from crude rat liver Golgi membranes and resulting in a protein with an apparent molecular mass of 43 kDa. The transporter was active when reconstituted into phosphatidylcholine vesicles and could be specifically photolabeled with P3-(4-azidoanilido)-uridine-5'-[P1-32P]triphosphate, an analog of UDP-N-acetylgalactosamine. Native functional size determination on a glycerol gradient suggested that the transporter exists as a homodimer within the Golgi membrane.  相似文献   

5.
Targeting and retention of Golgi membrane proteins   总被引:2,自引:0,他引:2  
Recent cloning of genes encoding membrane proteins of the Golgi complex has allowed investigation of protein targeting to this organelle. Targeting signals have been identified in three glycosyltransferases, a viral envelope protein and several proteins of the trans-Golgi network. Interestingly, the targeting signals for membrane proteins of the Golgi stacks seem to be contained in transmembrane domains. Information in the cytoplasmic tails is required for the targeting of trans-Golgi network proteins. Mechanisms involving both retention and retrieval have been invoked.  相似文献   

6.
Distinct lipid compositions of intracellular organelles could provide a physical basis for targeting of membrane proteins, particularly where transmembrane domains have been shown to play a role. We tested the possibility that cholesterol is required for targeting of membrane proteins to the Golgi complex. We used insect cells for our studies because they are cholesterol auxotrophs and can be depleted of cholesterol by growth in delipidated serum. We found that two well-characterized mammalian Golgi proteins were targeted to the Golgi region of Aedes albopictus cells, both in the presence and absence of cellular cholesterol. Our results imply that a cholesterol gradient through the secretory pathway is not required for membrane protein targeting to the Golgi complex, at least in insect cells.  相似文献   

7.
Changes in the biosynthesis and phosphorylation of rat peritoneal macrophage membrane proteins induced by protein malnutrition have been studied. The results clearly indicate that the biosynthesis of high molecular weight proteins (45-200 kDa) and their phosphorylation are significantly reduced in the macrophages isolated from protein deficient (4% protein-fed) rats compared to the control group fed 20% protein diet. Lipopolysaccharide (LPS) treatment both in vivo and in vitro enhanced the synthesis and phosphorylation of these proteins in both control and protein deficient groups; however, the extent of enhancement was much less in the deficient group. These results indicate that besides the down regulation of these membrane proteins, protein malnutrition seems to make these macrophages less responsive to potent immuno stimulants like LPS.  相似文献   

8.
A new displacement electrophoresis technique, termed free-solution isotachophoresis (FS-ITP) was used for the analysis of sphingolipid metabolism in Golgi subfractions. The discontinuous electrolyte system enables tissue-derived membrane vesicles to be separated and purified due to their polarity patterns in a mobility gradient. In this study total Golgi apparatus obtained from rat liver by discontinuous density gradient centrifugation was subfractionated by preparative FS-ITP, yielding enzymatically active cis-, medial-, and trans-Golgi subfractions. These membrane vesicles were assayed by the following established enzyme marker activities: NADH cytochrome c reductase (cis-Golgi), NADP phosphatase (medial-Golgi), and thiamine pyrophosphatase (trans-Golgi). The activity of phosphatidylcholine:ceramide phosphocholine transferase, a sphingomyelin synthesizing enzyme, is attributed to the cis- and medial-Golgi-derived subfractions. Analysis of Golgi lipids revealed a decline in membranous ceramide along the cis- to trans-Golgi polarity axis. Furthermore, significant amounts of newly synthesized sphingomyelin and diacylglycerol are transferred from the medial/cis- to the trans-Golgi compartment. The FS-ITP system is well suited for micropreparative experimental applications, as demonstrated by studies on phosphatidylcholine:ceramide phosphocholine transferase activity in Golgi membrane vesicles of rat liver obtained by FS-ITP.  相似文献   

9.
It has been shown that triiodothyronine (Ta) administration to thyroidectomized rats induces an increase in the in vitro net 32P uptake into liver nucleolar proteins. Such an increase depends on a stimulation of the nucleolus-associated protein kinase activity and not on a lower dephosphorylation rate.  相似文献   

10.
11.
Polarized expression of most epithelial plasma membrane proteins is achieved by selective transport from the Golgi apparatus or from endosomes to a specific cell surface domain. In Madin-Darby canine kidney (MDCK) cells, basolateral sorting generally depends on distinct cytoplasmic targeting determinants. Inactivation of these signals often resulted in apical expression, suggesting that apical transport of transmembrane proteins occurs either by default or is mediated by widely distributed characteristics of membrane glycoproteins. We tested the hypothesis of N-linked carbohydrates acting as apical targeting signals using three different membrane proteins. The first two are normally not glycosylated and the third one is a glycoprotein. In all three cases, N-linked carbohydrates were clearly able to mediate apical targeting and transport. Cell surface transport of proteins containing cytoplasmic basolateral targeting determinants was not significantly affected by N-linked sugars. In the absence of glycosylation and a basolateral sorting signal, the reporter proteins accumulated in the Golgi complex of MDCK as well as CHO cells, indicating that efficient transport from the Golgi apparatus to the cell surface is signal-mediated in polarized and non-polarized cells.  相似文献   

12.
The Golgi marker enzyme, UDP-galactose:N-acetylglucosamine beta 1-4galactosyltransferase (beta 1-4GalT) was purified 44300-fold in its intact, membrane-bound form from rat liver membranes. The protein was isolated from detergent extracts as a high-M(r) form, having a Stokes radius approximating a globular protein of M(r) 440,000. It is comprised of a single protein component as observed on SDS/polyacrylamide gels, having an M(r) near 51,000, and does not have intermolecular disulfide cross-links. N-terminal sequencing of the enzyme demonstrated that it contains an N-terminal hydrophobic stretch deduced previously from cDNA encoding for the enzyme. Previous studies have indicated that the protein may be translated at either of two AUG sites near the 5' end of the mRNA [Russo, R. N., Shaper, N. L. & Shaper, J. H. (1990) J. Biol. Chem. 265, 3324-3331], giving rise to two polypeptides, one appended with 13 amino acids. In the work described here, evidence was only found for the sequence of the short form, missing a single methionine at the N-terminus. Mild proteolytic treatment cleaved the enzyme, giving rise to low-M(r) forms which were fully catalytically active and which, upon sequencing, were missing a 66-amino-acid stretch from the N-terminus (as compared to the mouse cDNA). Proteolytic treatment was accompanied by conversion of the form having a large Stokes radius to one approximating a globular protein with M(r) near 50,000. The N-terminal stretch appears to contribute to maintenance of the form having a large Stokes radius. This may be the result of interaction with a detergent micelle, dimerization or oligomerization, or interaction with some other large, non-protein molecule, although a detergent exchange still resulted in a form having a large Stokes radius.  相似文献   

13.
14.
The hemodynamic response to nitroglycerin administration, to sublingual or oral administration of isosorbide dinitrate, or to a placebo was evaluated and compared in 37 patients with unstable angina pectoris under resting, pain-free conditions. Patients with congestive heart failure were not included in this study. Serial measurements of mean arterial blood pressure (MAP), pulmonary arterial end-diastolic pressure (PAEDP), cardiac index (CI), and heart rate (HR) were obtained for one hour following nitroglycerin administration and for four hours following sublingual or oral administration of isosorbide dinitrate. Echocardiographic end-diastolic volume (EDV) measurements were obtained for the groups receiving isosorbide dinitrate or placebo. There was a significant (P less than 0.05 or less than 0.1) reduction of the MAP (5 to 10 mm Hg) that persisted for more than four hours following both sublingual and oral administration of isosorbide dinitrate. The changes in the PAEDP, HR, and CI following sublingual or oral administration of isosorbide dinitrate were small and not significant. In the group receiving isosorbide dinitrate sublingually, the EDV was reduced by more than 30 ml below the placebo group (P less than 0.1) for up to four hours. The effects of nitroglycerin administration were similar in magnitude but of much shorter duration (three to four hours for sublingual and oral administration of isosorbide dinitrate vs 15 to 30 minutes for nitroglycerin). These data demonstrate that the duration of the hemodynamic effects of sublingually and orally administered isosorbide dinitrate in patients with unstable angina pectoris and normal resting hemodynamics is 8 to 12 times longer than that of nitroglycerin.  相似文献   

15.
We have recently shown that the endoplasmic reticulum (ER) membrane protein, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is cleaved in isolated membrane fractions enriched for endoplasmic reticulum. Importantly, the cleavage rate is accelerated when the membranes are prepared from cells that have been pretreated with mevalonate or sterols, physiological regulators of the degradation process in vivo (McGee, T. P., Cheng, H. H., Kumagai, H., Omura, S., and Simoni, R. D. (1996) J. Biol. Chem. 271, 25630-25638). In the current study, we further characterize this in vitro cleavage of HMG-CoA reductase. E64, a specific inhibitor of cysteine-proteases, inhibits HMG-CoA reductase cleavage in vitro. In contrast, lactacystin, an inhibitor of the proteasome, inhibits HMG-CoA reductase degradation in vivo but does not inhibit the in vitro cleavage. Purified ER fractions contain lactacystin-sensitive and E64-insensitive proteasome activity as measured by succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin hydrolysis. We removed the proteasome from purified ER fractions by solubilization with heptylthioglucoside and observed that the detergent extracted, proteasome-depleted membrane fractions retain regulated cleavage of HMG-CoA reductase. This indicates that ER-associated proteasome is not involved in degradation of HMG-CoA reductase in vitro. In order to determine the site(s) of proteolysis of HMG-CoA reductase in vitro, four antisera were prepared against peptide sequences representing various domains of HMG-CoA reductase and used for detection of proteolytic intermediates. The sizes and antibody reactivity of the intermediates suggest that HMG-CoA reductase is cleaved in the in vitro degradation system near the span 8 membrane region, which links the N-terminal membrane domain to the C-terminal catalytic domain of the protein. We conclude that HMG-CoA reductase can be cleaved in the membrane-span 8 region by a cysteine protease(s) tightly associated with ER membranes.  相似文献   

16.
The distribution of free and membrane-bound ribosomes in liver in response to starvation has not been clearly defined. An investigation has been made of the effects of starvation on the content of DNA, RNA, protein, phospholipid and glycogen in rat liver, on the distribution of free and membrane-bound ribosomes, and on the content of phospholipid and glycogen in free and bound ribosome fractions. The results indicate that starvation can produce up to a 50% reduction in hepatic ribosomes without altering either the fraction of rRNA relative to the total RNA or the distribution of free and membrane-bound ribosomes. In addition, the degree of contamination of isolated ribosomes with membranous material does not fluctuate with changes in the nutritional status of the animal. The results suggest that the relative capacities for protein synthesis among the two ribosome compartments are maintained during the early stages of starvation. Further, co-sedimentation with glycogen is not responsible for the presence of membranous materials in purified ribosomes.  相似文献   

17.
18.
Acute ethanol administration induces significant modifications both in secretive and formative membranes of rat liver Golgi apparatus. The decrease in glycolipoprotein secretion and their retention into the hepatocyte contribute to the pathogenesis of alcohol-induced fatty liver. Molecular and cellular mechanisms behind the ethanol-induced injury of the liver secretory pathway are not yet completely defined. In this study on intact livers from ethanol-treated rats, the involvement of the Golgi compartment in the impairment of hepatic glycolipoprotein secretion has been correlated with changes in the expression level, subcellular distribution and enzymatic activity of protein kinase C (PKC) isoforms. Acute ethanol exposure determined a translocation of classic PKCs and delta isoform from the cytosol to cis and trans Golgi membranes, the site of glycolipoprotein retention in the hepatic cell. A marked stimulation of cytosolic epsilon PKC activity was observed throughout the period of treatment. The presence of activated PKC isozymes at the Golgi compartment of alcohol-treated rat livers may play a role in hepatic secretion and protein accumulation. Direct and indirect effects of ethanol consumption on PKC isozymes and Golgi function are discussed.  相似文献   

19.
The effects of mono(2-ethyl-5-oxohexyl)phthalate [ME(O)HP], a di(2-ethylhexyl)phthalate (DEHP) metabolite and a potent peroxisomal inducer, on the mitochondrial beta-oxidation were investigated. In isolated rat hepatocytes, ME(O)HP inhibited long chain fatty acid oxidation and had no effect on the ketogenesis of short chain fatty acids, suggesting that the inhibition occurred at the site of carnitine-dependent transport across the mitochondrial inner membrane. In rat liver mitochondria, ME(O)HP inhibited carnitine acyltransferase I (CAT I; EC 2.3.1.21) competitively with the substrates palmitoyl-CoA and octanoyl-CoA. An analogous treatment of mouse mitochondria produced a similar competitive inhibition of palmitoyl-CoA transport whereas ME(O)HP exposure with guinea pig and human liver mitochondria revealed little or no effect. The addition of clofibric acid, nafenopin or methylclofenopate revealed no direct effects upon CAT I activity. Inhibition of transferase activity by ME(O)HP was reversed in mitochondria which had been solubilized with octyl glucoside to expose the latent form of carnitine acyltransferase (CAT II), suggesting that the inhibition was specific for CAT I. Our results demonstrate that in vitro ME(O)HP inhibits fatty acid oxidation in rat liver at the site of transport across the mitochondrial inner membrane with a marked species difference and support the idea that induction of peroxisome proliferation could be due to an initial biochemical lesion of the fatty acid metabolism.  相似文献   

20.
Electron impact (EI) tandem mass spectrometry (MS/MS) combined with EPR spin trapping was used to detect and identify the free radical metabolites of various halocarbons in rat liver microsomal dispersions. EPR spectra of the spin adducts of radical metabolites derived from fluorine-containing halocarbons display fluorine hyperfine splitting, which can be used as proof for the identification of this kind of halocarbon-derived free radical spin adduct. For halocarbons without fluorine atoms, MS/MS was found to be a very useful and simple method for the detection and identification of the structures of halocarbon-derived spin adducts from radical metabolites. The molecular ions from spin adducts of these halocarbon-derived free radical intermediates were observed for the first time by scanning the precursor ion spectrum of m/z 57. These assignments were further confirmed by the use of perdeuterated tert-butyl PBN which provides the precursor ion spectrum of m/z 66.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号