首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The fabrication of high-quality focal plane arrays from HgCdTe layers grown by molecular beam epitaxy (MBE) requires a high degree of lateral uniformity in material properties such as the alloy composition, doping concentration, and defect density. While it is well known that MBE source flux nonuniformity can lead to radial compositional variation for rotating substrates, we have also found that composition can be affected significantly by lateral variations in substrate temperature during growth. In diagnostic experiments, we systematically varied the substrate temperature during MBE and quantified the dependence of HgCdTe alloy composition on substrate temperature. Based on these results, we developed a methodology to quickly and nondestructively characterize MBE-grown layers using postgrowth spatial mapping of the cutoff wavelength from the Fourier transform infrared (FTIR) transmission at 300 K, and we were able to obtain a quantitative relationship between the measured spatial variations in cutoff and the substrate temperature lateral distribution during growth. We refined this methodology by more directly inferring the substrate temperature distribution from secondary ion mass spectroscopy (SIMS) measurements of the As concentration across a wafer, using the fact that the As incorporation rate in MBE-grown p-type layers is highly sensitive to substrate temperature. Combining this multiple-point SIMS analysis with FTIR spatial mapping, we demonstrate how the relative contributions from flux nonuniformity and temperature variations on the lateral composition uniformity can be separated. This capability to accurately map the lateral variations in the substrate temperature has been valuable in optimizing the mounting and bonding of large substrates for MBE growth, and can also be valuable for other aspects of MBE process development.  相似文献   

2.
We report here molecular beam epitaxy (MBE) mercury cadmium telluride (HgCdTe) layers grown on polished and repolished substrates that showed state-of-the-art optical, structural, and electrical characteristics. Many polishing machines currently available do not take into account the soft semiconductor materials, CdZnTe (CZT) being one. Therefore, a polishing jig was custom designed and engineered to take in account certain physical parameters (pressure, substrate rotational frequency, drip rate of solution onto the polishing pad, and polishing pad rotational velocity). The control over these parameters increased the quality, uniformity, and the reproducibility of each polish. EPIR also investigated several bromine containing solutions used for polishing CZT. The concentration of bromine, as well as the mechanical parameters, was varied in order to determine the optimal conditions for polishing CZT.  相似文献   

3.
A Hg1-xCdxTe growth method is presented for molecular beam epitaxy, which precisely controls growth conditions to routinely obtain device quality epilayers at a certain specific composition. This method corrects the fluctuation in composition x for run-to-run growth by feedback from the x value for the former growth to the fluxes from CdTe and Te cells. We achieved standard deviation Δx/ x of 3.3% for 13 samples grown consecutively. A substrate temperature drop was found during growth, which considerably degrades the crystal quality of epilayers. In this method, this drop is greatly diminished by covering the holder surface with a heavily doped Si wafer. Finally, etch pit density of 4 x 104 cm-2 and full width at half-maximum of 12 arc-s for the x-ray double-crystal rocking curve were obtained as the best values.  相似文献   

4.
We have carried out a study and identified that MBE HgCdTe growth-induced void defects are detrimental to long wavelength infrared photodiode performance. These defects were induced during nucleation by having surface growth conditions deficient in Hg. Precise control and reproducibility of the CdZnTe surface temperature and beam fluxes are required to minimize such defects. Device quality material with void defect concentration values in the low 102 cm2 range were demonstrated.  相似文献   

5.
HgCdTe MBE technology is becoming a mature growth technology for flexible manufacturing of short-wave, medium-wave, long-wave, and very long-wave infrared focal plane arrays. The main reason that this technology is getting more mature for device applications is the progress made in controlling the dopants (both n-type and p-type in-situ) and the success in lowering the defect density to less than 2 x 105/cm2 in the base layer. In this paper, we will discuss the unique approach that we have developed for growing As-doped HgCdTe alloys with cadmium arsenide compound. Material properties including composition, crystallinity, dopant activation, minority carrier lifetime, and morphology are also discussed. In addition, we have fabricated several infrared focal plane arrays using device quality double layers and the device results are approaching that of the state-of-the-art liquid phase epitaxy technology.  相似文献   

6.
Growth of Hg1−xCdxTe by molecular beam epitaxy (MBE) has been under development since the early 1980s at Rockwell Scientific Company (RSC), formerly the Rockwell Science Center; and we have shown that high-performance and highly reproducible MBE HgCdTe double heterostructure planar p-on-n devices can be produced with high throughput for various single- and multiplecolor infrared applications. In this paper, we present data on Hg1−xCdxTe epitaxial layers grown in a ten-inch production MBE system. For growth of HgCdTe, standard effusion cells containing CdTe and Te were used, in addition to a Hg source. The system is equipped with reflection high energy electron diffraction (RHEED) and spectral ellipsometry in addition to other fully automated electrical and optical monitoring systems. The HgCdTe heterostructures grown in our large ten-inch Riber 49 MBE system have outstanding structural characteristics with etch-pit densities (EPDs) in the low 104 cm−2 range, Hall carrier concentration in low 1014 cm−3, and void density <1000 cm2. The epilayers were grown on near lattice-matched (211)B Cd0.96Zn0.04Te substrates. High-performance mid wavelength infrared (MWIR) devices were fabricated with R0A values of 7.2×106 Ω-cm2 at 110 K, and the quantum efficiency without an antireflection coating was 71.5% for cutoff wavelength of 5.21 μm at 37 K. For short wavelength infrared (SWIR) devices, an R0A value of 9.4×105 Ω-cm2 at 200 K was obtained and quantum efficiency without an antireflection coating was 64% for cutoff wavelength of 2.61 μm at 37 K. These R0A values are comparable to our trend line values in this temperature range.  相似文献   

7.
The Leti-Lir has studied II–VI compounds for infrared (IR) detection for more than 20 years. The need to reduce the production cost of IR focal plane arrays (FPAs) sparked the development of heteroepitaxy on large-area substrates. Germanium has been chosen as the heterosubstrate for the third generation of IR detectors. First, we report on the progress achieved in HgCdTe growth on 3-in. and 4-in. (211)B CdTe/Ge. Then, we discuss the choice of a new machine for larger size and better homogeneity. Finally, we present the latest results on third-generation IR multicolor and megapixel devices. First-time results regarding a middle wavelength infrared (MWIR) dual-band FPA, with a reduced pitch of 25 μm, and a MWIR 1,280×1,024 FPA will be shown. Both detectors are based on molecular beam epitaxy (MBE)-grown HgCdTe on Ge. The results shown validate the choice of Ge as the substrate for third-generation detectors.  相似文献   

8.
Molecular beam epitaxy (MBE) via the vapor-liquid-solid (VLS) reaction was used to grow ZnSe nanowires (NWs) on (111), (100), and (110) oriented GaAs substrates. Through detailed transmission electron microscopy (TEM) studies, it was found that 〈111〉 orientation is the growth direction for NWs with size ≥30 nm, while NWs with size around 10 nm prefer to grow along the 〈110〉 direction, with a small portion along the 〈112〉 direction. These observations have led to the realization of vertical ZnSe NWs with size around 10 nm grown on a GaAs (110) substrate. An ordered ZnSe NW array fabricated on a GaAs (111) substrate with a novel prepatterning method associated with plasma etching shows a high degree of ordering and a good size uniformity of the as-grown NWs. The diameter of the NWs in the array is around 80 nm and most of them are found to orient vertically, but some tilt to one of the six possible directions of the 〈111〉 family.  相似文献   

9.
MBE growth and characterization of in situ arsenic doped HgCdTe   总被引:2,自引:0,他引:2  
We report the results of in situ arsenic doping by molecular beam epitaxy using an elemental arsenic source. Single Hg1−xCdxTe layers of x ∼0.3 were grown at a lower growth temperature of 175°C to increase the arsenic incorporation into the layers. Layers grown at 175°C have shown typical etch pit densities of 2E6 with achievable densities as low as 7E4cm−2. Void defect densities can routinely be achieved at levels below 1000 cm−2. Double crystal x-ray diffraction rocking curves exhibit typical full width at half-maximum values of 23 arcsec indicating high structural quality. Arsenic incorporation into the HgCdTe layers was confirmed using secondary ion mass spectrometry. Isothermal annealing of HgCdTe:As layers at temperatures of either 436 or 300°C results in activation of the arsenic at concentrations ranging from 2E16 to 2E18 cm−3. Theoretical fits to variable temperature Hall measurements indicate that layers are not compensated, with near 100% activation after isothermal anneals at 436 or 300°C. Arsenic activation energies and 77K minority carrier lifetime measurements are consistent with published literature values. SIMS analyses of annealed arsenic doping profiles confirm a low arsenic diffusion coefficient.  相似文献   

10.
In this paper, we present all the successive steps for realizing dual-band infrared detectors operating in the mid-wavelength infrared (MWIR) band. High crystalline quality HgCdTe multilayer stacks have been grown by molecular beam epitaxy (MBE) on CdZnTe and CdTe/Ge substrates. Material characterization in the light of high-resolution x-ray diffraction (HRXRD) results and dislocation density measurements are exposed in detail. These characterizations show some striking differences between structures grown on the two kinds of substrates. Device processing and readout circuit for 128×128 focal-plane array (FPA) fabrication are described. The electro-optical characteristics of the devices show that devices grown on Ge match those grown on CdZnTe substrates in terms of responsivity, noise measurements, and operability.  相似文献   

11.
分子束外延HgCdTe薄膜As掺杂P型激活研究   总被引:5,自引:1,他引:5  
报道了利用As4作为掺杂源获得原位As掺杂MBE HgCdTe材料的研究结果.利用高温退火技术激活As使其占据Te位形成受主.对原位As掺杂MBE HgCdTe材料进行SIMS及Hall测试,证实利用原位As掺杂及高温退火可获得P型MBE HgCdTe材料.  相似文献   

12.
Growth of very low arsenic-doped HgCdTe   总被引:3,自引:0,他引:3  
Arsenic is known to be an amphoteric impurity that may occupy either sublattice in HgCdTe depending upon sample annealing. As an acceptor in low concentrations, it offers several features that are attractive for the fabrication of certain n + -on-p detector diode structures. The epitaxial growth of arsenic-doped HgCdTe from a Te-rich melt can fulfill the requirements for application in a variety of devices where low vacancy concentrations and low defect densities are critical requirements in minimizing dark currents. These devices may include the high operating temperature (HOT) detectors operated in a strong nonequilibrium and reverse bias mode to suppress the Auger-generated dark currents. For the materials’ growth process to be effective, the segregation coefficient determining the incorporation of arsenic from the Te-rich melt needs to be established. This coefficient was measured during these investigations and was observed to vary with arsenic concentration. Within the range of interest, this parameter varied between 8×10−6 and 1×10−4. These extremely small values limit the doping that can be achieved to <5×1016 cm−3 in the grown epifilm. Furthermore, the large addition of arsenic to the melt, necessitated by the extremely small segregation coefficients, leads to a condition where the concentration of arsenic in the liquid-phase epitaxy (LPE) nutrient melt exceeds that of cadmium. The melt chemistry, phase diagram, and epigrowth process fundamentally change as a result. This new epigrowth process was developed and tuned during these investigations. For acceptor levels at 1×1015 cm−3 and lower, the growth of arsenic-doped HgCdTe from a Te-rich LPE melt has been determined to be an extremely reproducible, powerful, and controllable technique.  相似文献   

13.
Most pollution gases, CO, CO2, NOx, SO2, CH4 …, have fundamental optical absorption in the near infrared range. We report here on microcavity light sources emitting at room temperature between 2 and 6 μm integrated in a gas detection system. HgCdTe has been chosen for this application, among several semiconductor materials. Molecular beam epitaxy (MBE) is very well adapted to grow the suitable HgCdTe heterostructure. The quality of involved HgCdTe layers has to be optimized in order to have a good photoluminescence response at 300 K. For this study, we used the knowledge we acquired in the field of MBE HgCdTe growth for infrared focal plane arrays (IRFPAs). Especially, we took advantage of the substrate preparation before growing and the flux control. We show subsequently several characterization results concerning our material quality. The compact emitting system is formed by this microcavity structure coupled to a 0.8-μm external pumping source. The Fabry-Perot type microcavity is obtained by using two evaporated YF3/ZnS dielectric multilayered Bragg mirrors. We developed several devices exhibiting emission wavelengths at 3.3 μm, 4.26 μm, and 4.7 μm for CH4, CO2, and CO gas measurements, respectively, and 3.7 μm for the reference beam. We measured less than 200 ppm CH4 in a 1 bar mixed gas along a 10-cm-long cell.  相似文献   

14.
We report the results of annealing effects on the As-doped alloy HgCdTe grown by molecular beam epitaxy (MBE), arsenic (As) diffusion in HgCdTe from Hg-rich solutions at low temperatures, and As ion implantation at room temperature. Hall-effect measurements, secondary ion mass spectrometry and p-on-n test photodiodes were used to characterize the As activation. High As-doping levels (1017−1019 cm−3) could be obtained using either MBE growth, As diffusion or As ion-implantation. Annealed below 400°C, As doping in HgCdTe shows n-type characteristics, but above 410°C demonstrates that all methods of As doping exhibit p-type characteristics independent of As incorporation techniques. For example, for samples annealed at 436°C (PHg≈2 atm), in addition to p-type activation, we observe a significant improvement of p/n junction characteristics independent of the As source; i.e. As doping either in situ, by diffusion, or ion implantation. A study of this As activation of As-doped MBE HgCdTe as a function of anneal temperature reveals a striking similarity to results observed for As diffusion into HgCdTe and implanted As activation as a function of temperature. The observed dependence of As activation on partial pressure of Hg at various temperatures in the range of 250 to 450°C suggests that As acts as an acceptor at high Hg pressure (>1 atm) and as a donor at low Hg pressure (<1 atm) even under Hg-rich conditions.  相似文献   

15.
The flexible nature of molecular-beam epitaxy (MBE) growth is beneficial for HgCdTe infrared-detector design and allows for tailored growths at lower costs and larger focal-plane array (FPA) formats. Control of growth dynamics gives the MBE process a distinct advantage in the production of multicolor devices, although opportunities for device improvement still exist. Growth defects can inhibit pixel performance and reduce the operability in FPAs, so it is important to understand and evaluate their properties and impact on detector performance. The object of this paper is to understand and correlate the effects of macrodefects on two-color detector performance. We observed the location of single-crystal and polycrystalline regions on planar and cross-sectioned surfaces of two-color device structures when void defects were viewed by scanning electron microscopy (SEM). Compositional analysis via energy dispersive x-ray analysis (EDXA) of voids in the cross section showed elevated Te and reduced Hg when compared to defect-free growth areas. The second portion of this study examined the correlation of macrodefects with pixel operability and diode current-voltage (I–V) characteristics in mid-wavelength infrared (MWIR)/MWIR (M/M) and long wavelength infrared (LWIR)/LWIR (L/L) two-color devices. The probability of diode failure when a void is present is 98% for M/M and 100% for L/L. Voids in two-color detectors also impact diodes neighboring their location; the impact is higher for L/L detectors than M/M detectors. All void-containing diodes showed early breakdown in the I–V characteristics in one or both bands. High dislocation densities were observed surrounding voids; the high density spread further from the void for L/L detectors compared to M/M detectors.  相似文献   

16.
We have studied the p-type doping in ZnSe molecular beam epitaxial growth using a novel high-power (5 kW) radio frequency (rf) plasma source. The effect of growth conditions such as the rf power, the Se/Zn flux ratio and the growth temperature on p-ZnSe:N was investigated. The net acceptor concentration (NA—ND) of around 1 × 1018 cm−3 was reproducibly achieved. The activation ratio ((NA—ND)/[N]) of p-ZnSe:N with NA—ND of 1.2 × 1018 cm−3 was found to be as high as 60%, which is the highest value so far obtained for NA—ND ∼ 1018 cm−3. The 4.2K photoluminescence spectra of p-ZnSe:N grown under the optimized growth condition showed well-resolved deep donor-acceptor pair emissions even with high NA—ND. On leave from Sumitomo Electric Industry Ltd. On leave from Sony Corp.  相似文献   

17.
Transmission electron microscopy (TEM) was used to evaluate the microstructure of molecular beam epitaxy (MBE) grown (211)B oriented HgCdTe films. TEM analysis of in-situ doped p-on-n and n-p-n device structures will be presented. Under fully optimized growth conditions the substrate-epilayer interface is free of threading dislocations and twins, and a high degree of structural integrity is retained throughout the entire device structure. However, under non-optimal growth conditions that employ high Hg/Te flux ratios, twins can be generated in the p-type layer of p-on-n device structure, resulting in roughness and facetting of the film surface. We propose a mechanism for twin formation that is associated with surface facetting. TEM evaluation of voids, threading dislocations and Te-precipitates in HgCdTe films are also discussed.  相似文献   

18.
Arsenic incorporation during MBE growth of HgCdTe   总被引:2,自引:0,他引:2  
We discuss the equilibrium model of the amphoteric behavior of arsenic in HgCdTe and its applicability to material grown by molecular beam epitaxy. Suggestions are made on how to achieve active incorporation by manipulating the surface orientation, or by using precursors that provide steric hindrance.  相似文献   

19.
CdZnTe wafers were inserted into a multi-chamber processing facility without prior preparation, cleaned by exposure to an electron cyclotron resonance Ar/H2 plasma, and used as substrates for molecular beam epitaxy of HgCdTe. Changes induced in the wafer near-surface region during the cleaning step were monitored using in situ spectroscopic ellipsometry. Ellipsometric data were subsequently modeled to provide the time evolution of the thickness of a native overlayer. Auger electron spectra were consistent with surfaces free of residual contamination and which had the stoichiometry of the underlying bulk. Surface roughness values of 0.4 nm were obtained ex situ using interferometric microscopy. Electron diffraction patterns of plasma prepared wafers heated to 185°C (the temperature required for HgCdTe molecular beam epitaxy) were streaked. Structural and electrical characteristics of epilayers grown on these substrates were found to be comparable to those deposited on wafers prepared using a conventional wet chemical process. This demonstrates an important step in an all-vacuum approach to HgCdTe detector fabrication.  相似文献   

20.
Investigation into resonant-cavity-enhanced (RCE) HgCdTe detectors has revealed a discrepancy in the refractive index of the CdTe layers grown by molecular beam epitaxy (MBE) for the detectors, compared with the reported value for crystalline CdTe. The refractive index of the CdTe grown for RCE detectors was measured using ellipsometry and matches that of CdTe with an inclusion of approximately 10% voids. X-ray measurements confirm that the sample is crystalline and strained to match the lattice spacing of the underlying Hg(1−x)Cd(x)Te, while electron diffraction patterns observed during growth indicate that the CdTe layers exhibit some three-dimensional structure. Secondary ion mass spectroscopy results further indicate that there is enhanced interdiffusion at the interface between Hg(1−x)Cd(x)Te and CdTe when the Hg(1−x)Cd(x)Te is grown on CdTe, suggesting that the defects are nucleated within the CdTe layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号