首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dietary trans monoenes have been associated with an increased risk of heart disease in some studies and this has caused much concern. Trans polyenes are also present in the diet, for example, trans α‐linolenic acid is formed during the deodorisation of α‐linolenic acid‐rich oils such as rapeseed oil. One would expect the intake of trans α‐linolenic acid to be on the increase since the consumption of rapeseed oil in the western diet is increasing. There are no data on trans α‐linolenic acid consumption and its effects. We therefore carried out a comprehensive study to examine whether trans isomers of this polyunsaturated fatty acid increased the risk of coronary heart disease. Since inhibition of Δ6‐desaturase had also been linked to heart disease, the effect of trans α‐linolenic acid on the conversion of [U‐13C]‐labelled linoleic acid to dihomo‐γ‐linolenic and arachidonic acid was studied in 7 healthy men recruited from the staff and students of the University of Edinburgh. Thirty percent of the habitual fat was replaced using a trans ‘free’‐ or ‘high’ trans α‐linolenic acid fat. After at least 6 weeks on the experimental diets, the men received 3‐oleyl, 1,2‐[U‐13C]‐linoleyl glycerol (15 mg twice daily for ten days). The fatty acid composition of plasma phospholipids and the incorporation of 13C‐label into n‐6 fatty acids were determined at day 8, 9 and 10 and after a 6‐week washout period by gas chromatography‐combustion‐isotope ratio mass spectrometry. Trans α‐linolenic acid of plasma phospholipids increased from 0.04 ? 0.01 to 0.17 ? 0.02 and cis ? ‐linolenic acid decreased from 0.42 ? 0.07 to 0.29 ? 0.08 g/100 g of fatty acids on the high trans diet. The composition of the other plasma phospholipid fatty acids did not change. The enrichment of phosphatidyl 13C‐linoleic acid reached a plateau at day 10 and the average of the last 3 days did not differ between the low and high trans period. Both dihomo‐γ‐linolenic and arachidonic acid in phospholipids were enriched in 13C, both in absolute and relative terms (with respect to 13C‐linoleic acid). The enrichment was slightly and significantly higher during the high trans period (P<0.05). Our data suggest that a diet rich in trans α‐linolenic acid (0.6% of energy) does not inhibit the conversion of linoleic acid to dihomo‐γ‐linolenic and arachidonic acid in healthy middle‐aged men consuming a diet rich in linoleic acid.  相似文献   

2.
Bioisosterism of α‐amino acids is often accomplished by replacing the α‐carboxylate with one of the many known carboxylic acid bioisosteres. However, bioisosterism of the whole α‐amino acid moiety is accomplished with heterocyclic bioisosteres that often display an acidic function. In this Minireview, we summarized the reported heterocycles as nonclassical bioisosteres of α‐amino acids, which include quinoxaline‐2,4(1H)‐dione, quinoxaline‐2,3(1H)‐dione and quinolin‐2(1H)‐one, azagrevellin and azepine‐derived structures. The binding mode of the crystalized bioisosteres were compared with those of the crystalized α‐amino acids that bind in the same domain, and where no data on the crystal structure were available, the displacement studies of known orthosteric ligands were used. The reported bioisosteres share the following essential structural features for mimicking α‐amino acids: an aromatic ring system joined to a lactam ring system with an acidic feature next to the lactam carbonyl, where this acidic feature together with the lactam carbonyl can mimic the α‐carboxylate, and the lactam nitrogen together with the aromatic ring system can mimic the α‐ammonium. The majority of these heterocycles can be prepared from three common corresponding starting materials: the corresponding anilines, isatins or anthranilic esters. The data collected here show the potential of this class of bioisosteres in the design of glutamate receptor ligands and beyond.  相似文献   

3.
2‐Hydroxy fatty acids can be found in several different organisms, including bacteria. In this study, we have studied the biosynthesis of 2‐hydroxy fatty acids in the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca, resulting in the identification of a family of stereospecific fatty acid α‐hydroxylases. Although the stereospecificities of the hydroxylases differ between these two species, they share a common function in supporting fatty acid α‐oxidation; that is, the oxidative shortening of fatty acids. Whereas in S. aurantiaca this process takes place during normal vegetative growth, in M. xanthus it takes place only under developmental conditions. We were also able to identify serine palmitoyltransferase encoding genes involved in sphingolipid biosynthesis as well as sphingolipids themselves in both types of myxobacteria, and were able to show that the α‐hydroxylation reaction is in fact dependent on the presence of fatty acids bound to sphingolipids.  相似文献   

4.
The Lewis base‐organocatalyzed asymmetric hydrosilylation of α‐acetamido‐β‐enamino esters was investigated. Among various chiral Lewis base catalysts, a novel catalyst derived from L ‐serine was found to be the most efficient one which can promote the reaction to afford a series of α,β‐diamino acid derivatives with high yields (up to 99%), excellent enantioselectivities (up to 98% ee) and moderate diastereoselectivities (up to 80:20 dr). The absolute configuration of one of the products was determined by the X‐ray crystallographic analysis. In addition, the mechanism and the transition state of the reaction were proposed.  相似文献   

5.
The first organocatalytic enantioselective Strecker synthesis of α‐quaternary α‐trifluoromethylated amino acids has been developed. Employing Takemoto’s thiourea catalyst the nucleophilic addition of trimethylsilyl cyanide to trifluoromethyl ketimines affords α‐amino nitriles in good to excellent yields (50–99%) and very good enantioselectivities (ee=83–95%). The enantiopure amino nitriles can be obtained by recrystallization. Deprotection and hydrolysis leads to the title amino acids.  相似文献   

6.
Biodegradable polymers/oligomers were successfully synthesized through a ring‐opening polymerization of ε‐caprolactone and L ,L ‐lactide, initiated by L ‐arginine and L ‐citrulline. The α‐amino acid initiators are natural, operationally simple, inexpensive, environmentally friendly and safe for human health. The polymerizations were performed with no solvents and without introducing any metal impurities. The chemical structures of the polymers obtained were elucidated using 1H NMR, 13C NMR and Fourier transform infrared spectroscopies. In addition, incorporation of α‐amino acid molecules into the polymer chain was confirmed using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. Due to the significant biological activity of L ‐arginine and L ‐citrulline, these α‐amino acid initiators may open a new route for the synthesis of functional polymers especially for pharmaceutical applications. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
α,β‐Dehydroamino acid derivatives proved to be a novel substrate class for ene‐reductases from the ‘old yellow enzyme’ (OYE) family. Whereas N‐acylamino substituents were tolerated in the α‐position, β‐analogues were generally unreactive. For aspartic acid derivatives, the stereochemical outcome of the bioreduction using OYE3 could be controlled by variation of the N‐acyl protective group to furnish the corresponding (S)‐ or (R)‐amino acid derivatives. This switch of stereopreference was explained by a change in the substrate binding, by exchange of the activating ester group, which was proven by 2H‐labelling experiments.  相似文献   

8.
A new procedure for the aerobic oxidation of α‐amino acids acylated by pyrrole‐carboxylic acid with triplet dioxygen is introduced. The reaction is general for a variety of pyrrole‐amino acid derivatives and represents a very practical and controllable method for the selective preparation of α‐hydroperoxy‐ or α‐hydroxy‐α‐amino acid diketopiperazines with molecular dioxygen. Furthermore, the non‐catalyzed direct oxidation of amino acid derivatives at the α‐position with molecular dioxygen represents a fundamental question.  相似文献   

9.
Highly regio‐ and diastereoselective 1,2‐addition of organolithium reagents to chiral fluoroalkyl α,β‐unsaturated Ntert‐butanesulfinyl ketimines was developed, providing a general and efficient method for the asymmetric synthesis of structurally diverse α‐tertiary fluoroalkyl allylic amines in high yields and with excellent diastereoselectivities (dr up to>99:1). The synthetic application of the method was demonstrated by the rapid and convenient preparation of challenging α‐fluoroalkyl α‐amino acids with α‐tetrasubstituted carbon.

  相似文献   


10.
The first organocatalytic Mannich reaction of 5H‐oxazol‐4‐ones with various readily prepared aryl‐ and alkylsulfonimides has been developed. Two commercially available pseudoenantiomeric Cinchona alkaloids‐derived tertiary amine/ureas have been demonstrated as the most efficient catalysts to access the opposite enantiomers of the Mannich products with equally excellent enantio‐ and diastereoselectivities. From the Mannich adducts, important α‐methyl‐α‐hydroxy‐β‐amino acid derivatives, such as the α‐methylated C‐13 side chain of taxol and taxotere, can be conveniently prepared.  相似文献   

11.
Addition of lithiated methoxyallene 5 to literature‐known amino aldehyde 3 followed by ozonolysis provided syn‐configurated α‐hydroxy‐β‐amino ester 6 in moderate overall yield and with an ee of 90%. The predominant formation of syn‐compounds may be due to a chelate controlled addition step.  相似文献   

12.
A new enantioselective α‐benzylation and α‐allylation of α‐tert‐butoxycarbonyllactones was devloped. α‐Benzylation and α‐allylation of α‐tert‐butoxycarbonylbutyrolactone and α‐tert‐butoxycarbonylvalerolactone under phase‐transfer catalytic conditions (50% cesium hydroxide, toluene, −60 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide (1 mol%) afforded the corresponding α‐substituted α‐tert‐butoxycarbonyllactones in very high chemical yields (up to 99%) and optical yields (up to 99% ee). The synthetic potential of this method has been successfully demonstrated by the asymmetric synthesis of unnatural α‐quaternary homoserines, 3‐alkyl‐3‐carboxypyrrolidine and 3‐alkyl‐3‐carboxypiperidine.  相似文献   

13.
Novel all‐cis‐configurated indolizino[3,4‐b]quinoline receptors 3, 4 were prepared via diastereoselective Lewis acid‐catalyzed cyclization of N‐arylimines 6, 7 as the key step. In order to obtain the indolizino[3,4‐b]quinoline derivative 21 without a gem‐dimethyl group at C‐7, an N‐arylimine precursor 18 bearing a vinyldisilane terminus was prepared in 8 steps from L‐prolinol 15 . In contrast to the known β‐effect of silyl groups cyclization of 18 proceeded via an α‐carbenium ion species to give the diastereomeric products 19, 20, which were desilylated to 21, 22 . The association constants for receptors 2 — 4 and 21 decreased in the order 21 > 2 > 4 > 3 for both acetic acid and N‐Z‐phenylalanine as substrates.  相似文献   

14.
A palladium‐catalyzed oxidative acylation of O‐phenyl carbamates with α‐oxocarboxylic acids via selective aromatic C H bond activation is described. This protocol represents the first ortho‐acylation of phenol derivatives, and a catalytic amount of triflic acid additive is crucial for this transformation.  相似文献   

15.
A very simple method was developed for the direct, palladium‐free catalytic α‐allylic alkylation of aldehydes. The direct organocatalytic intermolecular α‐allylic alkylation reaction was mediated by a simple combination of Brønsted acid and enamine catalysis which furnished α‐allylic alkylated aldehydes and cyclohexanone in high yields and chemoselectivities. The reaction conditions are mild and environmental friendly, the process is conducted under an atmosphere of air without the need for dried solvents, and water is the only side product of the allylic alkylation reaction.  相似文献   

16.
Asymmetric allylation of (hetero)aromatic aldehydes by a zinc(II)‐allylbutyrolactone species catalyzed by a chiral BINOL‐type phosphoric acid gave β‐substituted α‐methylenebutyrolactones in 68 to >99% ee and 52–91% isolated yield. DFT studies on the intermediate Zn2+‐complex – crucial for chiral induction – suggest a six‐membered ring intermediate, which allows the phosphoric acid moiety to activate the aldehyde. The methodology was applied to the synthesis of the antitumour natural product (S)‐(−)‐hydroxymatairesinol.

  相似文献   


17.
The dynamic kinetic resolution of α‐substituted racemic β‐lactams by alcoholytic ring‐opening, catalyzed by immobilized lipase B from Candida antarctica is described. With this process, a variety of racemic α‐substituted N‐Cbz‐azetidinones (Cbz=benzyloxycarbonyl) was transformed to the corresponding N‐Cbz‐protected β2‐amino acid allyl esters with high enantioselectivity (up to 99%) and high yields (up to quantitative) at room temperature.

  相似文献   


18.
Complexes of the milk protein, α‐lactalbumin, and the fatty acid, oleic acid, have previously been shown to be cytotoxic. Complexes of α‐lactalbumin and five different fatty acids (vaccenic, linoleic, palmitoleic, stearic, and elaidic acid) were prepared and compared to those formed with oleic acid. All complexes were cytotoxic to human promyelocytic leukemia‐derived (HL‐60) cells but to different degrees depending on the fatty acid. The amount of fatty acid per α‐lactalbumin molecule was found to correlate with the cytotoxicity; the higher the number of fatty acids per protein, the more cytotoxic the complex. Importantly, all the tested fatty acids were also found to be cytotoxic on their own in a concentration dependent manner. The cytotoxic effect of complexes between α‐lactalbumin and linoleic acid, vaccenic acid, or oleic acid was further investigated using flow cytometry and found to induce cell death resembling apoptosis on Jurkat cells. Practical applications: Cytotoxic complexes of α‐lactalbumin and several different fatty acids could be produced. The cytotoxicity of all the variants is similar to that previously determined for α‐lactalbumin/oleic acid complexes.  相似文献   

19.
The ramipril derivative N,N′‐dioxide 3g ‐indium(III) complex was found to be an efficient catalyst for the allylation of the aromatic α‐keto phosphonates. The corresponding α‐hydroxy phosphonates were obtained with high yields (up to 98 %) and high enantioselectivities (up to 91 % ee). A bifunctional catalyst system was described with an N‐oxide as Lewis base activating tetraallyltin and indium as Lewis acid activating aromatic α‐keto phosphonates. A possible catalytic cycle has been proposed to explain the mechanism of the reaction.  相似文献   

20.
An asymmetric Michael addition of α‐substituted cyano ketones to β,γ‐unsaturated α‐keto esters to form chiral dihydropyrans catalyzed by a series of α‐amino acid‐derived thiourea‐tertiary amines is presented. A novel tyrosine‐derived thiourea catalyst was identified as the optimal catalyst providing the desired product in 91–95% yields and with 90–96% ee at a low catalyst loading of 2.0 mol%. The utility of the reaction was exemplified by facile conversion of the dihydropyran product into pharmaceutically useful dihydropyridine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号