首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物滞留设施被广泛应用于城市地表径流污染的控制,其中基质组成、植物和饱和带是影响其去除N、P的关键。通过构建以河砂与紫色土为混合基质的生物滞留系统,种植根系发达的草本植物紫穗狼尾草,研究设置饱和带与否对去除城市地表径流中溶解性N、P的影响。结果表明,生物滞留以80%河砂与20%紫色土为混合过滤基质,在进水PO_4~(3-)-P平均浓度为(0.33±0.04)mg/L时,出水PO_4~(3-)-P平均浓度可达到(0.03±0.01)mg/L,平均去除率为91.5%;进水NH+4-N平均浓度为(3.00±0.37)mg/L,出水NH+4-N平均浓度为(1.15±0.19)mg/L,平均去除率为61.3%。基质吸附与离子交换是去除城市地表径流中PO_4~(3-)-P和NH_4~+-N的主要途径,生物滞留设置饱和带与否,不影响对PO_4~(3-)-P和NH_4~+-N的去除。但设置饱和带可显著提高对NO_3~--N的去除率。不设置饱和带时进水NO_3~--N平均浓度为(3.89±0.19)mg/L,出水平均浓度为(3.76±0.52)mg/L,平均去除率为3.4%;设置饱和带时进水NO_3~--N浓度为(3.69±0.16)mg/L,出水平均浓度为(0.75±0.04)mg/L,平均去除率为79.8%。停留时间是影响NO_3~--N去除的重要因素。对于种植紫穗狼尾草、设置饱和带且不加碳源的生物滞留系统,通过延长停留时间可以有效去除城市地表径流中的NO_3~--N。  相似文献   

2.
采用生活污水,研究了A/O生物接触氧化反应器的挂膜启动及对COD、NH_4~+-N、PO_4~(3-)-P和NO_3~--N的去除性能。在平均进水COD、NH_4~+-N、PO_4~(3-)-P和NO_3~--N浓度分别为179、45.8、3.61和0.93 mg/L,水温为22~25℃,DO为2~3 mg/L的条件下,采用连续流人工接种挂膜,22 d后生物膜成熟。第6天,HRT为12 h时,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为64.29%、38.38%和18.25%,出水NO_3~--N为16.21 mg/L;第15天时HRT为9 h,开始排泥使SRT保持在30 d,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为78.51%、67.71%和36.49%,出水NO_3~--N为17.67 mg/L,填料表面附着一层黄褐色的生物膜;第22天时HRT降至6 h,达到设计值,SRT为10 d,对COD、NH_4~+-N和PO_4~(3-)-P的去除率分别为86.84%、78.20%和73.79%,出水NO_3~--N浓度为10.79 mg/L,生物膜增厚呈深褐色,表明系统启动成功。  相似文献   

3.
通过批次试验和连续流试验研究了土霉素对厌氧氨氧化颗粒污泥脱氮性能的影响。厌氧氨氧化颗粒污泥反应器(UASB)进水NH_4~+-N浓度为40~50 mg/L,NO_2~--N浓度为55~65mg/L,温度控制为30℃,HRT控制为1.6 h。经过60 d运行,反应器的厌氧氨氧化脱氮性能良好,出水NH_4~+-N和NO_2~--N浓度分别为3.1和6.3 mg/L,对NH_4~+-N、NO_2~--N和TIN的去除率分别为91.2%、93.4%和75.2%。在土霉素对厌氧氨氧化颗粒污泥反应器的长期抑制试验中,颗粒污泥对土霉素具有一定的耐受能力,当进水中的土霉素浓度为10 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别为70.7%和70.8%;当进水中的土霉素为20 mg/L时,反应器对NH_4~+-N和NO_2~--N的去除率分别降低至16.8%和18.1%。与长期抑制试验相比,批次试验中土霉素对颗粒污泥厌氧氨氧化活性的抑制作用较小,土霉素浓度为50、100、150、200和400 mg/L时,对TIN的去除速率分别为0.498、0.480、0.439、0.326和0.120 kg N/(kg VSS·d)。  相似文献   

4.
为匹配厌氧氨氧化工艺,本试验探索了短程硝化反应器的启动情况。试验结果表明,在保证温度为(35±1)℃,溶解氧阶段性调整,p H值为7.5~8.5,NH+4-N浓度为30~40 mg·L~(-1)的条件下~([1]),经过50天的运行调试,间歇曝气与连续曝气两组装置启动成功:NH_4L~+-N去除率分别达到92.90%和94.24%;NO_2~--N的积累率分别达到95.42%与92.25%,出水浓度分别可以达到2.63 mg·L~(-1)和2.06mg·L~(-1),并且在恢复到室温条件下依然能稳定运行。结合NH+-4-N去除率和NO_2~--N的积累率来看,间歇曝气要优于连续曝气。  相似文献   

5.
采用SBR反应器处理实际生活污水,控制温度为(25±0.5)℃,在进水NH_4~+-N和COD平均浓度分别为65.59和219.10 mg/L条件下,通过交替缺氧/好氧模式(单周期4次交替缺氧∶好氧=30 min∶30 min)运行70个周期,出水NO_3~--N、NO_2~--N和COD浓度分别为0.69、19.91和40.64 mg/L,氨氮去除率和COD去除率分别为98.67%和79.55%,亚硝态氮积累率达到98.44%。在实现短程硝化过程中,AOB活性从第1周期的11.61%增加到第39周期的105.99%,之后AOB的活性超过NOB的活性。  相似文献   

6.
传统生物滞留系统对TSS、重金属和COD有较好的去除效果,但对N、P的去除效果不稳定。为了强化对N、P的去除,尝试用铝污泥和沸石对传统基质填料进行改良以提高系统对氨氮和磷的吸附效果,并在系统底部设置淹没区创造缺氧环境以提高系统对硝态氮的去除效果。模拟滞留柱试验采用15%铝污泥和85%沸石作为填料,对比了在无淹没区和有淹没区条件下对模拟雨水中各种污染物的去除效果。结果表明,在无淹没区条件下,系统对进水TSS负荷的变化有很好的抗冲击能力,当进水TSS为100~400 mg/L时,出水TSS浓度始终在20 mg/L以下。当进水COD为150~250 mg/L、TP为2.5~7 mg/L、NH_4~+-N为3~4 mg/L、NO_3~--N为6~10 mg/L时,系统对COD、TP、NH_4~+-N、NO_3~--N的平均去除率分别为76%、98%、97%、36%。在有淹没区且进水浓度基本相同的条件下,系统对TSS、COD、TP、NH_4~+-N等污染物的去除率较无淹没区时均没有大的变化,但对NO_3~--N的平均去除率则上升为79%。同时,系统对As、Pb、Zn、Cu、Hg、Cd、Cr等重金属也有良好的去除效果。添加铝污泥后提高了滞留系统对磷和重金属的控制能力。  相似文献   

7.
为实现焦化废水中COD、挥发酚、SCN~-、CN~-、NH_3-N、NO_3~--N和TN的同步高效去除,采用两级微氧EGSB反应器,对比研究了顺序回流和交叉回流时的运行效能。结果表明:用两级微氧EGSB反应器(EGSBⅠ+EGSBⅡ)处理焦化废水,当进水量为1.0 L/h、回流量为20 L/h时,顺序回流对COD、挥发酚、SCN-和CN-的去除率分别高达75.4%、99.9%、91.2%和89.3%,对NH3-N的去除率相对较低(82.1%),对TN的去除率则仍维持在很低水平(24.5%)。交叉回流(自身回流量为11 L/h、交叉回流量为9 L/h)能够强化焦化废水中各种污染物的去除,对COD、挥发酚、SCN~-、CN~-、NH_3-N、NO_3~--N和TN的平均去除率分别为75.8%、100%、97.3%、97.0%、91.8%、92.0%和68.1%;出水COD、挥发酚、SCN~-、CN~-、NH_3-N、NO_3~--N和TN的平均浓度分别为196.8、0、6.5、0.06、3.1、5.8、36.3 mg/L。EGSBⅡ内高浓度NO_3~--N回流至EGSBⅠ保证了EGSBⅠ内NH3-N和SCN-的同步高效去除,最终保证了两级微氧EGSB系统的高效稳定运行。  相似文献   

8.
探究了基于沸石生物固定床反应器(ZBFB)的吸附-生化解吸实现低浓度氨氮废水稳定亚硝化的可行性。当进水NH_4~+-N为50 mg/L左右时,ZBFB在吸附-生化解吸循环操作后的吸附出水NH_4~+-N都可稳定低于5 mg/L;当解吸温度为27℃时,ZBFB在前34个周期内的亚硝化生化解吸显著,出水亚硝化率(NAR)大于90%,但从第35个周期起,因硝酸盐氧化菌(NOB)对低游离氨(FA)的逐步适应,亚硝化生化解吸被破坏;逐步提升生化解吸温度可迅速恢复ZBFB的亚硝化生化解吸,并在生化解吸温度稳定在36℃时,ZBFB生化解吸出水NO_2~--N和NO_3~--N浓度分别稳定在259. 0~281. 2 mg/L和3. 2~12. 1 mg/L,对应的NAR保持在95. 5%~98. 8%,表现出稳定的NO_2~--N积累效果,实现了稳定亚硝化生化解吸。QPCR分析表明,相比于未升温条件下的生化解吸,控制生化解吸温度为36℃时ZBFB的amoA表达量明显大于Nitrobacter sp. 16S和Nitrospira sp. 16S的表达量,进一步验证了通过吸附床层升温恢复和实现ZBFB稳定亚硝化生化解吸的可行性。  相似文献   

9.
向成功启动并已稳定运行2年的ANAMMOX反应器中连续添加有机物(葡萄糖),研究ANAMMOX与反硝化协同脱氮反应器的启动特性.结果表明,在短期内(35 d)可成功启动ANAMMOX与反硝化协同脱氮反应器.启动过程可分为迟滞、适应和稳定运行三个阶段,在稳定运行阶段反应器对NH_4~+-N、NO_2~-—N、TN和COD的去除率分别高达95%、99%、94%和93%,NH_4~+-N去除量、NO_2~--N去除量与NO_3~--N生成量的比值为1:1.32:0.03,出水碱度和pH均略高于进水.  相似文献   

10.
海水盐度对A/O生物系统处理效果的影响   总被引:3,自引:0,他引:3  
试验采用A/O工艺,在进水COD为500~600 mg/L,NH3-N为80~90 mg/L,pH7.0~8.0,溶解氧为2~3 mg/L,温度为18~25 ℃的条件下,分别研究了不同海水盐度(10%,30%,50%,70%海水比例)对有机物及NH3-N去除效果的影响,对系统短程硝化的影响,以及对活性污泥结构与沉降性能的影响.结果表明:海水盐度在30%范围内,经驯化稳定后,系统对COD和NH3-N的去除率均可达到90%左右,NH3-N去除率受盐度影响程度相对更小;控制海水盐度在30%以上,系统可实现短程硝化;海水盐度为50%时,亚硝化率可达到97%,且较为稳定;随海水盐度的增加,污泥絮凝体由开放、疏松变得封闭、紧密,SVI不断下降.  相似文献   

11.
采用MBR作为强化富集厌氧氨氧化菌的反应器,以氯化铵和亚硝酸盐为进水底物,通过逐步缩短水力停留时间(HRT由24 h降低到4 h),成功实现了厌氧氨氧化的启动。整个驯化过程中,NH_4~+-N和NO_2~--N的去除率均维持在90.0%以上,总氮去除负荷(NRR)最大可达0.49kg/(m~3·d),且NO_2~--N/NH_4~+-N和NO_3~--N/NH_4~+-N值分别维持在1.32和0.26附近,符合厌氧氨氧化化学反应计量学规律;同时在驯化过程中,污泥颜色逐渐由深褐色变成红褐色,SEM结果表明接种污泥以杆状菌为主,驯化结束后则以球状菌为主,且结构紧密。采用成熟厌氧氨氧化污泥进行底物(NH_4~+-N和NO_2~--N)抑制动力学试验,并对试验结果采用Haldane模型进行拟合,获得半饱和常数分别为62.54和78.47 mg/L,抑制动力学常数分别为1 244.12和102.30 mg/L,相关性系数(R~2)分别为0.998 6和0.994 5。  相似文献   

12.
以某市城镇污水处理厂NO_3~--N浓度较高的生化出水为研究对象,采用反硝化生物滤池+曝气生物滤池(DN/CN)工艺,研究了碳氮比(C/N值)、进水负荷、温度等对TN去除效果的影响。结果表明,当增加的C/N值为3. 6、水力负荷≤9. 44 m~3/(m~2·h)[NO_3~--N最大负荷为4. 8 kg/(m~3·d)]时,出水TN满足国标要求(≤10 mg/L);去除单位质量TN需3. 7倍COD,碳源不足会导致NO_2~--N积累和碳源单耗升高; 14℃时的TN去除率较19℃时下降了约15%;反硝化过程中pH值增量和TN去除量存在一个对应关系,可用于反硝化滤池处理效果的辅助判断。  相似文献   

13.
采用SBR法处理晚期垃圾渗滤液,在温度为23~25℃、HRT为12.5 h、DO2 mg/L且碱度充足的条件下,仅通过提高渗滤液进水浓度并控制进水NH_4~+-N浓度在240 mg/L左右,以及FA、FNA对亚硝酸氧化菌的协同抑制即实现了稳定的半量亚硝化,NO_2~--N/NH_4~+-N值维持在1.1~1.4之间,满足后续厌氧氨氧化进水的需要。在此基础上,进一步研究进水渗滤液浓度、盐度、DO对半量亚硝化稳定性的影响。结果表明,通过控制进水氨氮浓度为220~300 mg/L、NaCl浓度20 g/L、DO为2.5~3.5 mg/L可有效维持半量亚硝化的稳定性。  相似文献   

14.
磷是微生物生命活动必不可少的元素之一,较低的磷含量会影响微生物的正常生命活动,从而导致污水的处理效果不好等后果。微生物最佳C/P为100:1,但是在不同的条件下,所需要的磷含量肯定也不一样。所以试验通过使用序批式反应器(SBR)探究在磷浓度极低条件下,HRT对缺氧好氧工艺的影响。试验结果表明,低磷含量对COD的去除几乎没有影响,在低负荷的条件下对NH_4~+-N去除的影响也比较有限。反应器进水COD为320mg/L左右,出水COD的浓度为18.07mg/L、去除率为92%。反应器进水NH_4~+-N浓度20.65mg/L左右,出水NH_4~+-N浓度为0.31mg/L,去除率98.47%。在低磷和较高的溶解氧条件下,活性污泥不会发生污泥膨胀,而且活性污泥的沉降性良好。SVI值25左右,低于正常水平。  相似文献   

15.
针对Ni2+对活性污泥的影响问题,以SBR活性污泥系统为对象,研究了不同浓度Ni2+对污水处理系统的长期影响。结果表明,Ni2+对SBR系统的影响随其浓度的增大而增强。当Ni2+浓度为10 mg/L时,Ni2+对SBR去除有机物和氨氮的抑制在试验前期不显著,后期则十分明显,SBR对COD和NH4+-N的去除率分别下降了19.8%和55.6%;当Ni2+浓度分别为20和40mg/L时,Ni2+对活性污泥的抑制作用明显,对COD和NH4+-N去除率的最大降幅分别为23.4%、68.0%和34.0%、75.3%。对比Ni2+对SBR去除COD和NH4+-N的抑制率发现,相同浓度的Ni2+对SBR去除NH4+-N的抑制明显高于SBR去除COD的,表明硝化菌对Ni2+的敏感性大于降解COD的菌种。  相似文献   

16.
利用硫自养反硝化技术实现城市污水厂二级出水深度脱氮。在构建中试硫填充床的基础上,优化系统运行参数,考察该系统对城市污水厂二级出水的深度脱氮效果,并核算运行成本。结果表明,硫填充床能够有效去除二级出水中的NO_3~--N,HRT高于0.24 h时,NO_3~--N去除率达90%以上;当HRT为0.21 h、进水NO_3~--N为12 mg/L时,NO_3~--N去除率达80%,装置日处理量最高达336 m~3,最大脱氮负荷达到1 158 mg/(L·d);通过反冲可以实现系统的稳定运行,反冲后1 h内即可恢复正常处理性能;系统运行成本较传统反硝化低,费用为0.11元/m~3。  相似文献   

17.
基于天然降雨长期监测和人工模拟降雨实验,研究了3个简单式绿色屋顶实验装置雨水径流营养盐浓度、总量及削减能力的差异,分析了基质层和排水层材料选型及降雨量等对绿色屋顶径流营养盐调控效果的影响。结果表明:绿色屋顶出水NH_4~+-N、NO_3~--N和TP浓度高于普通混凝土屋面;选用不同排水层材料的绿色屋顶出水营养盐浓度差异不明显;而选用超轻量基质作为基质层材料时,绿色屋顶出水TP浓度较高,NH_4~+-N浓度较低。绿色屋顶能削减部分径流中的NH_4~+-N、NO_3~--N和TP总量,不同基质层材料和排水层材料的绿色屋顶对不同营养盐总量削减效果无明显差异。除绿色屋顶自身不同结构层选型带来的差异外,降雨量和雨前干期是影响绿色屋顶出水NO_3~--N和TP浓度、营养盐总量及总量削减率的重要因素。  相似文献   

18.
将SBR与生物渗滤工艺结合并对生活污水进行处理,通过对工艺特性及不同溶解氧(DO)浓度和湿干比值下的除污效果研究,寻求其处理生活污水的最佳运行参数。经过一段时间的培养驯化后活性污泥生长良好,且生物渗滤池中积聚了大量的微生物。试验结果表明,溶解氧浓度对出水水质的影响较大,DO为2.5、3.0、2.0 mg/L时,工艺对COD、NH4+-N、TN的去除效果分别达到最佳,去除率分别为97%、99%、85%;湿干比对去除COD和NH4+-N的影响较大,对TN的去除受其影响相对较小,当湿干比值为1∶3时对COD、NH4+-N、TN的去除率最大,分别为95%、96%、85%。该工艺达到了对生活污水进行深度处理的要求,为生活污水的处理提供了新的方法。  相似文献   

19.
考察了前置预缺氧池的A~2/O工艺系统的脱氮除磷效果及其污泥浓度的影响。结果表明,缺氧池内存在反硝化除磷作用,对PO_4~(3-)-P的去除率高达86.4%,除磷潜力较大;而前置预缺氧池内的反硝化作用明显,对NO_3~--N的去除率高达81.2%,脱氮潜力较大。与污水厂生产运行的污泥浓度(2 000 mg/L左右)相比,将污泥浓度提高1倍,好氧池的硝化反应时间可缩短33%,NO_3~--N增加率提高10.9%;缺氧池的反硝化除磷时间可缩短43%,PO_4~(3-)-P去除率提高17.2%,反硝化脱氮时间可减少44%,NO_3~--N去除率提高27.1%,但对好氧硝化速率、缺氧反硝化除磷速率和脱氮速率的影响不大。  相似文献   

20.
《Planning》2018,(3):353-358
为研究溶藻弧菌Vibrio alginolyticusHA2同步硝化反硝化过程中氮的代谢产物,分别用以铵态氮(NH_4~+-N)、硝态氮(NO_3~--N)、亚硝态氮(NO_2~--N)为氮源的培养基培养溶藻弧菌HA2 120 h,测定不同时间段菌液浓度,以及NH_4~+-N、NO_3~--N、NO_2~--N、pH和发酵罐中气体(N_2、NO、N_2O)的含量,并且拟合菌株生长曲线。结果表明:溶藻弧菌对NH_4~+-N、NO_3~--N、NO_2~--N降解率最高分别为99.97%、99.95%、36.87%;生长极限k值分别为4.769、5.477、5.567;培养基中的NH_4~+-N直接被氧化为NO_3~--N;试验中均未检测出NO、N_2O气体,各培养基中N_2量均有上升趋势;各培养基中pH均有增加趋势。研究表明,溶藻弧菌HA2具有开发为高效、环保、安全的硝化反硝化细菌的研究价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号