首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
对化学镀Ni-P合金镀层进行铬酸盐钝化处理,并研究了钝化温度和钝化时间对化学镀NiP合金镀层耐蚀性的影响。结果表明:钝化处理可以显著提高化学镀Ni-P合金镀层的耐蚀性。经40g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性明显优于经5g/L重铬酸钾钝化的化学镀Ni-P合金镀层的耐蚀性。随着钝化温度的升高或钝化时间的延长,化学镀Ni-P合金镀层的耐蚀性增强。  相似文献   

2.
化学镀Ni-P合金耐蚀性的影响因素   总被引:14,自引:0,他引:14  
论述了镀液成份、磷含量、基材表面状态、前处理和后处理工艺及外加磁场等因素对化学镀NiP合金耐蚀性的影响。  相似文献   

3.
陈慧娟  王玲玲 《广州化工》2012,40(12):12-13
分析了化学镀Ni-P镀层的特点,着重讨论了前处理工艺、磁化处理和后处理工艺对镀层耐蚀性的影响。同时,综述了施镀温度、施镀时间、磷含量及其分布对镀层耐蚀性的影响。研究表明:施镀温度应控制在90℃左右;施镀时间延长,镀层厚度增加变缓。磷含量增加,使得化学镀Ni-P镀层的结构由晶态向非晶态转变。纵横向上磷含量分布都均匀或外层磷含量较低的镀层耐蚀性较好。  相似文献   

4.
崔以刚 《电镀与环保》2020,(1):31-32,33
在机械传动轴用40Cr钢基体上制备了化学镀Ni-P合金镀层,并对化学镀Ni-P合金镀层的厚度、表面粗糙度、结构、表面形貌及耐蚀性进行了研究。结果表明:化学镀Ni-P合金镀层属于立方结构,结晶度较好;化学镀Ni-P合金镀层表面呈现出均匀、致密的颗粒状形貌,厚度约为6.5 pm;化学镀Ni-P合金镀层的自腐蚀电位为一0.305 V,自腐蚀电流密度为36.72 ptA/cm2,耐蚀性较好。  相似文献   

5.
化学镀Ni-P合金镀层铬酸盐钝化膜的组成及其耐蚀性   总被引:1,自引:1,他引:0  
采用单一组分铬酸盐钝化液处理化学镀Ni-P合金层获得一种超薄钝化膜。电化学测试表明,钝化处理显著提高了Ni-P合金层的耐蚀性。X-射线光电子能谱分析表明,钝化膜主要由O、Cr及Ni等元素组成,并根据Ar+离子对钝化膜的溅射速率估算出钝化膜δ约为6nm。Cr 2p精细X-射线光电子能谱谱图分析表明,钝化膜中Cr元素主要以Cr2O3和Cr(OH)3的形式存在。并对钝化膜成膜机理进行了简单探讨。  相似文献   

6.
钕铁硼化学镀Ni-P合金层的孔隙率与镀层的耐蚀性有很大的关系。以铁氰化钾为指示剂采用贴滤纸法测定钕铁硼化学镀Ni-P合金层的孔隙率,研究了镀液pH、温度、主盐、还原剂及络合剂浓度对化学镀Ni-P合金层孔隙率的影响,并确定最佳的镀液参数,通过扫描电镜验证实验结果。结果表明:孔隙率随着镀液组成、pH及温度的增加而先减小后增加。  相似文献   

7.
镁合金化学镀Ni-P合金工艺研究   总被引:4,自引:1,他引:3  
采用硫酸镍为主盐在AZ31D镁合金表面直接化学镀Ni-P合金,优化了工艺条件,讨论了镀液pH、施镀温度、主盐、次磷酸钠及柠檬酸等因素对化学镀Ni-P合金的影响,利用金相显微镜等对镀层进行了测试.结果表明所得镀层光滑、致密、均匀,耐蚀性较好.  相似文献   

8.
研究了Ni-P化学镀覆非晶态舍金的制备,并对其进行了一定程度的探索,结果表明非晶态Ni-P合金化学镀镀层具有良好的耐蚀性能。  相似文献   

9.
柠檬酸对Ni-P合金化学镀沉积速度和镀层性能的影响   总被引:3,自引:1,他引:3  
研究了柠檬酸浓度对乙酸盐缓冲体系Ni-P合金化学镀沉积速度、镀层含磷量及其耐蚀性与结构的影响,并对镀层在镀态下和经热处理后的耐蚀性与结构进行了比较。结果表明,随柠檬酸浓度的增加,沉积速度先增加后l牵低,而镀层中磷含量则先降低后增加;镀态时高磷合金为非晶态结构且具有较好的耐蚀性,中磷合金则为非晶 微晶结构,耐蚀性较低,而所有镀层经350℃热处理1h后,结构都转变为晶态,且耐蚀性明显提高。  相似文献   

10.
不锈钢球阀化学镀Ni-P合金镀层研究   总被引:5,自引:0,他引:5  
采用与普通钢同样的方法对不锈钢球阀进行顸处理。然后化学镀Ni-P合金镀层。扫描电镜照片显示Ni-P合金镀层呈胞状结构。镀层组成分析表明,Ni、P的质量分数分别为88.37%和11.63%,其原子分数分别为80.04%和19.96%。研究了不锈钢基体、镀态和经过不同温度回火的涂覆层的显微硬度、结合力及腐蚀性能。结果表明,涂覆层的显微硬度随回火温度的升高而增大,在350℃时达到最大值,为1000Hy。显微硬度由高到低依次为:经过回火后的涂覆层、镀态、不锈钢基体。镀层与基体的结合力随镀层回火温度的升高呈现先升后降的趋势,在300℃时达到最大值,为42.3N。在质量分数分别为10%的盐酸、硫酸和盐酸与硫酸的混合酸中的腐蚀实验证明,Ni-P合金镀层的耐蚀性远远高于不锈钢基体,而经过回火后的涂覆层其耐蚀性比未经回火的低。因此,可以根据不同的性能要求。对不锈钢球阀选择不同的处理工艺。  相似文献   

11.
碱性化学沉积镍-磷合金镀层耐蚀性的研究   总被引:1,自引:0,他引:1  
采用正交实验对柠檬酸钠体系碱性镀镍液的组成及工艺条件进行优化,获得具有良好耐蚀性的镀层,并分析各组分的质量浓度对饺层耐蚀性能的影响。采用SEM观察镀层的表面微观形貌,利用电化学方法(Tafel曲线)和差重法评价镀层的耐蚀性能。结果表明:最佳工艺得到的镀层均匀、细致,镀液中NaH2PO2的质量浓度对镀层的耐蚀性能影响较大。  相似文献   

12.
为了进一步提高稀土合金钢的耐蚀性,在其表面沉积Ni-W-P化学镀层。对Ni-W-P化学镀层的表面形貌、成分及耐蚀性进行了观察与测试。结果表明:Ni-W-P化学镀层表面的胞状物分布较为均匀,镀层中W的质量分数约为2.0%;Ni-W-P化学镀层比稀土合金钢在硫酸介质中表现出更好的耐蚀性。  相似文献   

13.
化学镀镍磷合金工艺研究   总被引:13,自引:2,他引:11  
化学镀镍磷合金由于其优良的性能在工业上得到了广泛应用。为改进传统工艺所存在的不足,采用乳酸-柠檬酸混合络合剂体系研究了络合剂、温度、PH值及稳定剂地沉积速度的影响。优选了一种最佳工艺。该工艺稳定、沉积速度高、成本低,所得镀层平整、光亮、孔隙率低、硬度高,具有很好的应用价值。  相似文献   

14.
用静态失重法分别测量了Ni-Mo-P三元合金在NaCl、HCl、NaOH、H2SO4溶液中腐蚀速率,并与Ni-P合金比较,结果表明Mo元素存在提高了镀层耐蚀性。另外,还对镀层进行热处理,并通过极化曲线测定,结果表明当热处理温度达到600℃以上时,有利于镀层耐蚀性的提高。  相似文献   

15.
针对石油天然气中二氧化碳对输送管线和容器的腐蚀,采用化学镀的方法,在常用输送管线材料内壁形成Ni-P合金镀层.利用扫描电镜、X-射线衍射仪和电化学测试仪对镀层的表面形貌、相组成及电化学特性进行了分析.并在模拟油气田环境的腐蚀试验箱中进行了对比腐蚀试验.结果表明,管线材料经化学镀Ni-P合金镀层后,抗二氧化碳腐蚀作用有明显提高.  相似文献   

16.
采用极化曲线和交流阻抗法,与Ni-P合金镀层对比,研究了化学镀Ni-Cu-P合金镀层在3.5%NaCl水溶液中的电化学行为。极化曲线结果表明,化学镀Ni-Cu-P合金镀层的自腐蚀电流密度(4.037μA/cm2)远远小于Ni-P合金镀层,说明Ni-Cu-P合金镀层的耐蚀性能比Ni-P合金镀层好。在交流阻抗谱图中,化学镀Ni-Cu-P合金镀层在整个浸泡过程中仅出现一个时间常数的单容抗弧,镀层电阻不断的增大,表明镀层有钝化膜不断生成。  相似文献   

17.
在中温酸性条件下用化学沉积方法制备了Ni-Cu-P合金镀层,采用扫描电镜、能谱分析仪及Autolab工作站研究了镀层的耐蚀性能,确定了化学镀Ni-Cu-P合金的最佳工艺。其最佳工艺为:25 g/L NiSO_4·6H_2O,0.05 g/L CuSO_4·5H_2O,40 g/L C_6H_5Na_3O_7·2H_2O,25 g/L NaH_2PO_2·H_2O、15 g/L CH_3COONa,0.03 g/L KIO_3,0.01 g/L C_(12)H_(25)NaO_4SO_3,pH为(4.75±0.01),θ为(80±1)℃,沉积t为2 h。研究结果显示,中温酸性化学镀Ni-Cu-P合金镀层的腐蚀电流密度明显低于化学镀镍-磷合金镀层以及基体材料的腐蚀电流密度,其耐蚀性得到显著提高。  相似文献   

18.
通过金相显微镜考察了镀液中存在无机盐碘化钾(KI)时所得铝合金表面化学镀Ni-P层的表面形貌,采用交流阻抗研究了KI对Ni-P层耐蚀性的影响.结果表明:KI减少了Ni-P层中表面缺陷的数量,细化了镀层晶粒,镀层更加平整、致密,表面质量得到改善;另外,KI使镀层在NaCl溶液中的电荷转移电阻增大,提高了镀层的耐蚀性.  相似文献   

19.
硬铝合金化学镀镍耐蚀机理   总被引:4,自引:0,他引:4  
通过对铝合金组织,化学镀镍各溶液成分,化学镀镍镀层性质,铝合金化学镀镍工艺的分析,找出了影响铝合金化学镀镍耐蚀性的关键因素是镀层厚度和孔隙率,铝合金基体状态,前处理工艺,化学镀镍工艺参数,溶液成分,镀后处理等均会影响镀层的孔隙率,所以对铝合金化学镀镍耐蚀性等级要求高的行业在使用该工艺时要控制全过程工艺要点,否则就达不到预期的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号