首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将镍金材料结合壳聚糖修饰于玻碳电极表面形成复合膜,酪氨酸酶(Tyr)借助NHS~EDC联酶法修饰于复合膜上,制备了一种新型的酪氨酸酶修饰电极。以循环伏安法和电化学阻抗谱实验研究了修饰电极的电化学性能。由于复合材料良好的生物相容性和高电导特性,联酶法保持了酶活性和稳定性,该传感器对双酚A(BPA)具有良好的电化学响应。在最佳实验条件下,该传感器对双酚A的检测范围为:4.0×10^-8~5.0×10^-6mol/L,检测限为1.0×10^-8mol/L(信噪比=3)。该传感器具有良好的性能,重现性,稳定性。  相似文献   

2.
采用石墨烯纳米材料,并结合酪氨酸酶、聚酰胺-胺(PAMAM)和纳米银修饰玻碳电极研制了新型BPA生物传感器。运用循环伏安法和电化学交流阻抗考察了修饰电极的电化学行为。由于石墨烯独特的物理化学性质,结合聚酰胺-胺和纳米银的协同作用,该修饰电极对于BPA有较好的电流响应。在最佳条件下,该传感器对双酚A的线性检测范围为1.0×10-7~3.3×10-5mol/L,检测限为3.0×10-8 mol/L(信噪比为3),相关系数为0.998。  相似文献   

3.
基于氮掺杂石墨烯传感器检测双酚A   总被引:1,自引:0,他引:1  
制备了氮掺杂石墨烯为修饰电极,对双酚A(BPA)进行了电化学检测.实验表明,BPA在+0.2~+0.8 V扫描电位范围内,有一个不可逆的氧化还原峰出现.不同扫速的循环伏安行为发现,BPA的电化学氧化是一个由吸附控制的电极反应过程.BPA的浓度在4.0× 10-8~4.0× 10-6 mol/L范围内与其氧化峰电流呈线性关系,检出限达到1.33×10-8mol/L (S/N=3).该电极用于检测各种塑料中的BPA含量,回收率在95.93%~103.5%之间,结果令人满意.  相似文献   

4.
在石墨烯、壳聚糖和1-乙基-3-甲基眯唑四氟硼酸盐([BMIM])复合材料(Graphene—Chits-[BMIM])表面电沉积金,并自组装L-半胱氨酸包覆CdTe量子点,制备了修饰玻碳电极新型双酚A传感器。采用循环伏安法和电化学交流阻抗等方法研究了修饰电极的电化学特性。由于Graphene-Chits-[BMIM]复合材料中,石墨烯和[BMIMI都具有良好的导电性,该修饰电极对于双酚A有较好的电流响应。在最佳条件下,该传感器对双酚A的检测浓度范围:5.0×10^-8~7.05×10^-6mol/L,检测限为2.0×10^-8mol/L(3倍信噪比),相关系数为0.999。  相似文献   

5.
通过水热法制备了碲化钴纳米管,以制备的碲化钴纳米管、纳米金和壳聚糖组成的复合膜修饰裸铂电极,构建了一新型DNA电化学生物传感器.利用该生物传感器及邻菲罗啉钴电化学杂交指示剂对禽病毒基因进行了检测研究.实验表明,该法测定DNA的浓度线性范围为2.0×10-10~2.0×10-6 mol/L,最低检测限为7.94× 10-11 mol/L.  相似文献   

6.
磁性纳米粒子是一种新型的纳米材料,可应用于各种生物活性物质如蛋白质、DNA等的富集和分离、药物的磁靶向以及疾病的诊断和治疗等许多领域。由于磁性纳米粒子有着独特的化学和物理性能,已经成功的应用到磁控生物传感器、DNA传感器、蛋白质传感器、酶传感器以及其它类型的生物传感器中,并显著提高了生物传感器检测的灵敏度,缩短了生化反应的时间和提高检测的通量,为生物传感器领域开辟了广阔的前景。  相似文献   

7.
采用Raman光谱和循环伏安法研究了纳米A以u电极检测沙林的电化学反应机理。研究发现,以Fe“作为检测沙林分子中F的探针离子、纳米Au修饰的Au电极电化学传感器检测液相中的沙林,可同时检测到沙林分子中F和P=0基团,实验结果具备特征性。  相似文献   

8.
将L-半胱氨酸、聚二烯丙基二甲基氯化铵(PDDA)、纳米金及血红蛋白(Hb)自组装到金电极表面,制成了新型过氧化氢生物传感器.采用循环伏安法和计时电流法对该传感器的性能进行了详细研究.实验发现,该传感器增加了酶的吸附量,响应快、稳定性好,对H2O2表现出良好的响应特性.检测范围为4.2×10-7~3.0×10-3 mol/L,检出限为1.4×10-7 mol/L,并具有抗尿酸、抗坏血酸等干扰的特点.  相似文献   

9.
基于纳米金修饰丝网印刷电极的乙醇生物传感器   总被引:1,自引:1,他引:0  
在丝网印刷电极上利用吸附法固定乙醇脱氢酶,并用纳米金进行修饰,以铁氰化钾为介体制作了用于酒精检测的一次性乙醇脱氢酶电极试纸.纳米金颗粒修饰酶电极,极大地改善了电极电流响应,提高了传感器的灵敏度.此乙醇传感器的响应时间仅为25 s,灵敏度为0.06 μA(mmol/L)~(-1),线性浓度测量范围为1.0 mmol/L至10 mmol/L.  相似文献   

10.
制备了一种基于金纳米粒子(Au NPs)、氧化铈纳米颗粒(CeO2)和导电聚苯胺(PANI)的具有核壳结构的纳米复合材料(Au NPs-CeO2@PANI),利用该纳米复合材料和壳聚糖形成的复合膜成功实现了对葡萄糖氧化酶(GOD)的固定.采用透射电镜和X射线衍射对Au NPs-CeO2@PANI材料进行了表征.电化学方法研究了传感器性能,结果表明基于Au NPs-CeO2@PANI纳米复合材料修饰的葡萄糖生物传感器线性范围为6.2×10-6 mol/L~2.8×10-3 mol/L,响应时间为5 s,检测下限为1.0×10-6 mol/L;相同条件下Au NPs-CeO2@PANI纳米复合材料修饰的电极也显示出了比单一或二者复合的纳米材料修饰电极更优越的性能.  相似文献   

11.
以聚邻氨基苯甲酸/纳米金复合膜(poly-o-ABA/AuNP)为基底固载大肠杆菌抗体制备了一种新型的电化学免疫传感器.利用大肠杆菌与抗体之间的免疫反应构建了三明治夹心结构,以对苯二酚为电子媒介体,通过辣根过氧化酶(HRP)催化H2O2产生的响应电流对大肠杆菌进行检测.结果表明,在优化的实验条件下,该传感器的响应电流与大肠杆菌的浓度在1.0×103~1.0×107cfu/mL范围内呈良好的线性关系,检测限为2×102cfu/mL.经过预富集过程,该方法成功实现了对河水中大肠杆菌的检测.  相似文献   

12.
采用电势阶跃法,在Au电极表面修饰纳米Au,制备出的电化学传感器采用循环伏安法直接检测液相中的沙林,探讨了检测沙林的电化学反应机理.研究发现,检测沙林中,在1.4~0.1 V范围循环伏安扫描之前,预先进行2.0~-2.0V循环伏安扫描,是实现电化学方法检测沙林的重要先决条件.实验表明,纳米Au修饰Au电极表面后,提高了...  相似文献   

13.
利用电沉积方法对壳聚糖/铂纳米颗粒复合膜进行组装,以戊二醛作为交联剂同定葡萄糖氧化酶,构建葡萄糖生物传感器.实验结果表明:制得的葡萄糖生物传感器响应时间仅为8 s,线性测量范围为1×10-5~1×10-3moL/L,检测限为1.4×10-5 mol/L(S/N=3.0).该传感器灵敏度高,稳定性好.  相似文献   

14.
提出了一种基于纳米金/硫堇修饰金电极的ABA安培免疫传感器。该传感器基于H2O2-HRP-硫堇催化波体系构建,其中硫堇为传感介质。当HRP存在时,通过加入H2O2,硫堇的还原电流大幅增加,并且电流的增加依赖于HRP活性。HRP活性又由ABA与HRP酶标抗体结合物调控,产生一个减小的催化波。用BSA封闭硫堇单分子层修饰后可能存在的活性位点以避免非特异性吸附。优化了测定条件,包括酶标抗体和硫堇的最佳比例、培育时间、缓冲液的pH值和H2O2浓度。此传感器的还原电流在ABA浓度0.5~1000ng/mL范围内呈线性下降,回归方程为y=0.0209x 17.071,相关系数为0.9922,检测限为0.2ng/mL。  相似文献   

15.
采用循环伏安和滴涂的方法在玻碳电极上制备出一种均匀且具有高电活性聚苯胺(PANI)/多壁碳纳米管(MWCNTs)/纳米氧化铈(nano-CeO2)复合膜。从膜的厚度、pH值、碳纳米管(CNTs)与nanoCeO2的质量比等方面系统地研究了复合膜探测H2O2浓度的各影响因素。结果表明:循环伏安聚合25圈的聚苯胺分散和固定CNTs,nano-CeO2,以及辣根H2O2酶的能力较好,且以CNTs与nano-CeO2的质量比为15∶1的复合膜在pH=6.4的缓冲溶液中具有较高的电活性。该复合膜修饰的电极对H2O2具有良好的响应电流,较快的响应时间(5 s),较宽的检测范围为5.0×10-6~3.95×10-4mol/L,较低的检出极限7.6×10-7mol/L(S/N=3 dB)。  相似文献   

16.
由于金纳米颗粒(AuNPs)特殊的化学、物理特性。使其在生物催化及传感器领域有了越来越重要的应用。目前用来制备金纳米材料的方法有很多。近年来采用新型的、洁净无毒的、绿色的方法来合成金纳米粒子越来越受到重视。  相似文献   

17.
该文介绍了以复合壳聚糖@纳米碳为基底固定纳米金,利用具有催化性的纳米碳及纳米金作为识别元素检测亚硝酸盐,从而制备了无生物物质标记且无电子媒介体的亚硝酸盐传感器。该修饰电极在亚硝酸盐浓度为8.0×10-6~2.0×10-4mol/L范围内有线性响应,线性相关系数r=0.9956。实验结果表明,该传感器具有制备简单、灵敏度高、稳定性好、线性范围宽等优点。  相似文献   

18.
该文基于有机-无机复合膜和纳米技术研制了一种新型的高灵敏度的电流型过氧化氢(H2O2)生物传感器.首先将壳聚糖(CS)和氨丙基三乙氧基硅烷(APTES)交联制得复合膜(CSHMs),并以该膜固载甲苯胺蓝(TB)和纳米金(GNPs),然后将HRP与CSHMs-TB-GNPs混合滴涂在玻碳电极的表面,最后在其表面吸附一层Nafion保护膜,制得Nafion/CSHMs-TB-GNPs-HRP/GCE修饰电极.Nafion膜可以减少HRP的泄漏,同时增强了传感器的抗干扰能力.用紫外吸收光谱法分析了修饰膜成分的组成,用循环伏安法对修饰电极进行了表征,并用计时电流法对H2O2传感器的性能进行了研究.实验结果表明,在最佳实验条件下,H2O2浓度在7.0×10-7~2.3×10-3mol/L范围内与其还原峰电流呈现良好的线性关系,检测下限为2.4×10-7mol/L(信噪比3).  相似文献   

19.
用于检测环境中气体的电位传感器已经在传感器技术领域发展为一个成熟的方向。由于在各个行业有着广泛的应用,可靠廉价的CO2传感器有着巨大的市场潜力。总结了基于电化学的固态CO2传感器类型,分析了它们的检测过程,提供关于其传感原理和特性研发的广泛概述,并描绘了基于电化学的固态CO2传感器在未来各种应用的可能性。  相似文献   

20.
将聚吡咯(PPy)和辣根过氧化物酶(HRP)以电聚合的方式沉积在微Pt电极(φ=10μm)上,再以电化学沉积法将纳米Pt颗粒沉积在电极表面,由此制备出纳米Pt/HRP-PPy共固定微电极传感器(Pt/HRP-PPy-nano Pt CME),研究了其电化学行为。在除O2的磷酸盐缓冲液(PBS)中,该电极加速了H2O2还原反应,而沉积在PPy上的纳米Pt显著催化了该反应。以计时电流法定量分析H2O2,在30℃的0.02mol/LpH=7.0PBS中检测H2O2,在0.001~0.3mmol/L浓度范围呈现线性响应,相关系数为0.9972,检测下限达0.3μmol·L-1(S/N=3)。该传感器对H2O2电流响应灵敏度高(0.42mA.cm-2·mmol·L-1)、迅速(7.3s)、稳定性好。此传感器表现出Michaelis-Menten行为,KaMpp为0.033mmol·L-1。较小的KaMpp值表明固定在微Pt电极表面的纳米Pt/HRP对H2O2具有较高亲和性。检测了实际人血清样品中H2O2,结果和对照方法一致,本电极可用作痕量H2O2生医传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号