首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamic acid decarboxylase (GAD)65 is a pancreatic beta cell autoantigen implicated as a target of T cells that initiate and sustain insulin-dependent diabetes mellitus (IDDM) in humans and in non-obese diabetic (NOD) mice. In an attempt to establish immunological tolerance toward GAD65 in NOD mice, and thereby to test the importance of GAD in IDDM, we generated three lines transgenic for murine GAD65 driven by a major histocompatibility complex class I promoter. However, despite widespread transgene expression in both newborn and adult mice, T cell tolerance was not induced. Mononuclear cell infiltration of the islets (insulitis) and diabetes were at least as bad in transgenic mice as in nontransgenic NOD mice, and in mice with the highest level of GAD65 expression, disease was exacerbated. In contrast, the same transgene introduced into mouse strain, FvB, induced neither insulitis nor diabetes, and T cells were tolerant to GAD. Thus, the failure of NOD mice to develop tolerance toward GAD65 reflects at minimum a basic defect in central tolerance, not seen in animals not predisposed to IDDM. Hence, it may not be possible experimentally to induce full tolerance toward GAD65 in prediabetic individuals. Additionally, the fact that autoimmune infiltration in GAD65 transgenic NOD mice remained largely restricted to the pancreas, indicates that the organ-specificity of autoimmune disease is dictated by tissue-specific factors in addition to those directing autoantigen expression.  相似文献   

2.
We have shown that immunization of non-obese diabetic (NOD) mice with adjuvants (CFA or BCG) prevents the onset of diabetes by induction of regulatory cells. Since autoimmune responses to glutamic acid decarboxylase (GAD) are up-regulated in insulin-dependent diabetes mellitus (IDDM), in this study GAD67-specific antibody, T cell proliferation and lymphokine production patterns were analysed in the adjuvant-treated mice to characterize the regulatory mechanisms underlying the protection. We used both spontaneous diabetes and syngeneic islet transplantation models in NOD mice. Protection against spontaneous diabetes and prevention of syngeneic islet graft rejection by CFA or BCG treatment was found to be accompanied by the production of long lasting and high titre anti-GAD67 antibody of IgG1 isotype in the sera. Upon in vitro stimulation with GAD67, draining lymph node and spleen cells from CFA-immunized NOD mice or syngeneic islet-grafted and BCG-protected NOD mice produced much more IL-4, whereas there was no significant change in IFN-gamma production. The strong early T cell proliferative response to GAD67 in CFA or BCG-immunized NOD mice was followed by a low or unresponsiveness state. Taken together, these results suggest a shift in Th1/Th2 balance in the GAD67-specific endogenous immune response to a change in Th2 levels after adjuvant treatment. We postulate that the protective effect of CFA or BCG is due to the diversion of GAD-specific endogenous cellular immune response to a non-pathogenic humoral response.  相似文献   

3.
TGF-beta1, expressed in the pancreatic islets, protects the nonobese diabetic (NOD) mouse from insulin-dependent diabetes mellitus (IDDM). The islet antigen-specific T cell response of ins-TGF-beta1 mice relied on different antigen-presenting cells (APC) from those used by NOD T cells. T cells from NOD mice utilized B cells to present islet antigen, whereas T cells from ins-TGF-beta1 mice utilized macrophages. In addition, the islet antigen-specific T cell repertoire of ins-TGF-beta1 mice was distinct and deviated toward an IL-4-producing Th2 phenotype. When ins-TGF-beta1 mice were treated with anti-iL-4 antibody, islet antigen-specific IFNGamma-producing Th1 cells were unleashed, and the incidence of diabetes increased to the level of NOD mice. This suggests active suppression of a diabetogenic T cell response. This study describes a novel mechanism in which expression of TGF-beta1 in the context of self-antigen shifts APC preference, deviating T cell responses to a Th2 phenotype, preventing IDDM.  相似文献   

4.
Lately, TNF alpha has been the focus of studies of autoimmunity; its role in the progression of autoimmune diabetes is, however, still unclear. To analyze the effects of TNF alpha in insulin-dependent diabetes mellitus (IDDM), we have generated nonobese diabetic (NOD) transgenic mice expressing TNF alpha under the control of the rat insulin II promoter (RIP). In transgenic mice, TNF alpha expression on the islets resulted in massive insulitis, composed of CD4+ T cells, CD8+ T cells, and B cells. Despite infiltration of considerable number of lymphoid cells in islets, expression of TNF alpha protected NOD mice from IDDM. To determine the mechanism of TNF alpha action, splenic cells from control NOD and RIP-TNF alpha mice were adoptively transferred to NOD-SCID recipients. In contrast to the induction of diabetes by splenic cells from control NOD mice, splenic cells from RIP-TNF alpha transgenic mice did not induce diabetes in NOD-SCID recipients. Diabetes was induced however, in the RIP-TNF alpha transgenic mice when CD8+ diabetogenic cloned T cells or splenic cells from diabetic NOD mice were adoptively transferred to these mice. Furthermore, expression of TNF alpha in islets also downregulated splenic cell responses to autoantigens. These data establish a mechanism of TNF alpha action and provide evidence that local expression of TNF alpha protects NOD mice from autoimmune diabetes by preventing the development of autoreactive islet-specific T cells.  相似文献   

5.
BACKGROUND: Based on the hypothesis that IgGs are potent tolerogens and that immature lymphohematopoietic antigen-presenting cells (APC), and even mature peripheral B cells, may be effective APC for tolerance induction, we designed an immunoglobulin fusion protein retroviral expression vector to test the role of B cells in a novel gene therapy strategy for the transfer of immune tolerance. METHODS: An immunodominant epitope (residues 12-26 of the lambda repressor cI protein) was fused in frame to an IgG heavy chain in a retroviral vector, which was used to infect either bone marrow cells or activated peripheral B lymphocytes. These cells were transferred into syngeneic recipients, who were subsequently challenged with the 12-26 peptide in adjuvant. RESULTS: Bone marrow (BM) chimeras generated with retrovirally transduced bone marrow were shown to be profoundly unresponsive to the 12-26 peptide at both the humoral and cellular levels, but were competent to respond to an unrelated protein (lysozyme or PPD). Importantly, we also show that immunocompetent adult recipients infused with transduced mature, activated B lymphocytes, are rendered unresponsive by this treatment. Surprisingly, lymphoid-deficient BM progenitors from syngeneic SCID donors could also be transduced to produce tolerogenic APC. CONCLUSIONS: Our data suggest that activated B cells are sufficient to be effective tolerogenic APC in immunocompetent adult mice, but that nonlymphoid cells may also induce tolerance in reconstituted hosts. This approach for gene-transferred tolerogenesis has the potential to be maintained indefinitely, and it requires only knowledge of cDNA sequences of target antigens.  相似文献   

6.
Although they share approximately 88% of their genome with NOD mice including the H2g7 haplotype, NOR mice remain free of T cell-mediated autoimmune diabetes (IDDM), due to non-MHC genes of C57BLKS/J (BKS) origin. NOR IDDM resistance was previously found to be largely controlled by the Idd13 locus within an approximately 24 cM segment on Chromosome 2 encompassing BKS-derived alleles for H3a, B2m, Il1, and Pcna. NOD stocks carrying subcongenic intervals of NOR Chromosome 2 were utilized to more finely map and determine possible functions of Idd13. NOR- derived H3a-Il1 (approximately 6.0 cM) and Il1-Pcna (approximately 1.2 cM) intervals both contribute components of IDDM resistance. Hence, the Idd13 locus is more complex than originally thought, since it consists of at least two genes. B2m variants within the H3a-Il1 interval may represent one of these. Monoclonal Ab binding demonstrated that dimerizing with the beta 2m(a) (NOD type) vs beta 2m(b) isoform (NOR type) alters the structural conformation, but not total expression levels of H2g7 class I molecules (e.g. Kd, Db). Beta 2m-induced alterations in H2g7 class I conformation may partially explain findings from bone marrow chimera analyses that Idd13 modulates IDDM development at the level of non-hematopoietically derived cell types controlling selection of diabetogenic T cells and/or pancreatic beta cells targeted by these effectors. Since trans-interactions between relatively common and functionally normal allelic variants may contribute to IDDM in NOD mice, the search for Idd genes in humans should not be limited to functionally defective variants.  相似文献   

7.
Xenogeneic hematopoietic chimeras have been used to assay the growth and differentiation of human stem/progenitor cells. The presence of human hematopoietic cells in immunodeficient mice transplanted with human marrow cells may be caused by proliferation and differentiation of early stem/progenitor cells and/or proliferation of mature cells. Unpurified human marrow mononuclear cells, T cell-depleted, or stem/progenitor cell-enriched (CD34+ or CD34+CD38-) populations were injected into sublethally irradiated NOD/LtSz scid/scid (NOD/SCID) mice. High levels of human cells were detected in mice (hu/mu chimeras) transplanted with each of the above human marrow populations. Large numbers of mature human T lymphocytes were found in marrow, spleens, and thymuses from hu/mu chimeras that had been transplanted with unpurified human mononuclear marrow cells. Human immunoglobulin was detected in sera from these chimeras, and some exhibited a clinical syndrome suggestive of graft-versus-host disease. In contrast, in hu/mu chimeras that had received T cell-depleted or stem/progenitor cell-enriched populations, multilineage hematopoiesis (myeloid, B lymphoid, and progenitor cells by immunophenotype) was detected but T lymphocytes and human immunoglobulin were not; in addition, no human cells were detected in the thymuses. Thus, injection of adult human marrow cells into immunodeficient mice can result in hematopoietic chimerism for at least 3 months after transplant. However, the types of cells present in hu/mu chimeras differ depending on the human cell population transplanted. This should be taken into account when hematopoietic chimeras are used to assess human stem/progenitor cell function.  相似文献   

8.
The aim of the present study was to investigate the pathogenic properties of islet-infiltrating lymphocytes related to the severity of the autoimmune destruction of islet beta-cells in the NOD mouse. We analysed the development of insulin-dependent diabetes mellitus (IDDM) produced by adoptive transfer of islet lymphocytes from NOD into NOD.scid mice. Here we show that the transfer was most effective when both CD4+ and CD8+ T cells were present in the infiltrate, but CD4+ T cells alone were sufficient to cause the disease. Islet lymphocytes from both females and males transferred diabetes effectively, but the severity of IDDM was higher when female islet lymphocytes were used. Unexpectedly, the sensitivity of male islets to beta-cell damage was greater than that of female islets. Treatment of NOD females with a peptide of heat shock protein (hsp)60, p277, known to protect NOD mice from IDDM, reduced the pathogenicity of the islet lymphocytes. In contrast, administration of cyclophosphamide to males, a treatment that accelerates the disease, rendered the islet lymphocytes more pathogenic. More severe disease in the recipient NOD.scid mice was associated with more interferon-gamma (IFN-gamma)-secreting islet T cells of the NOD donor. The disease induced by islet lymphocytes was strongly inhibited by co-transfer of spleen cells from prediabetic mice, emphasizing the regulatory role of peripheral lymphocytes. Thus, the cellular characteristics of the islet infiltrate and the pathogenicity of the cells are subject to complex regulation.  相似文献   

9.
This paper introduces a model which incorporates fetal thymus organ culture (FTOC) from NOD mice to replicate thymic development of diabetogenic T cells. NOD fetal pancreas organ culture (FPOC) co-cultured with 13-16 day NOD FTOC for an additional 14-21 days produced less insulin than FPOC cultured alone. Insulin production from the FTOC of non-diabetic strains C57BL/6 and BALB/c was not inhibited by co-culture with FTOC from their syngeneic counterparts. Sections of the NOD co-cultures showed peri-islet infiltration with lymphocytes. Insulin reduction by FTOC/FP co-culture was prevented by co-culture of the NOD FT with FT from immunologically incompetent C.B-17 SCID/SCID mice. Co-culture of NOD FP with NOD FT prior to the development of T cells prevented generation of diabetogenic FTOC. Thus, early exposure of NOD T cell precursors to the thymic stromal elements of C.B-17 SCID/SCID FT or to islet antigens can negatively select for diabetogenic T cells or activate immuno-regulatory cells that can suppress diabetogenic T cell activity. The addition of blocking F(ab')2 fragments of anti-CD3epsilon monoclonal antibody to NOD FTOC/FP co-cultures prevented insulin reduction, implicating a role for TcR-mediated recognition in this "in vitro IDDM" model. The addition of activating whole anti-CD3epsilon caused the complete ablation of insulin production in FTOC/FP co-cultures from all strains tested. Transfer of unprimed syngeneic FTOC cells to prediabetic NOD mice prevented the onset of IDDM while transfer of islet-cell primed FTOC/FP cells slightly increased disease incidence. These data suggest that while diabetogenic T cells are present in the FT, they are normally suppressed, even after organ culture. However, these cells can induce the destruction of islet cells, in vitro and in vivo, if they are appropriately activated with pancreatic tissue.  相似文献   

10.
The present study demonstrated that a short-term administration of mAbs against leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) at critical periods resulted in complete protection of autoimmune diabetes in non-obese diabetic (NOD) mice. When these mAbs were administered for only 6 days at 2 wk of age, neither diabetes nor insulitis was observed at 30 wk of age. It appears that the tolerance against beta cell Ag(s) was induced by this transient blockade of the LFA-1/ICAM-1 pathway. Protective suppressor activity was not enough to prevent diabetes because co-transfer of splenocytes from female NOD mice, which had received these mAbs at 2 wk of age, resulted in only a short delay of the diabetic onset caused by adoptive transfer of splenocytes from acutely diabetic NOD mice. Transfer of these splenocytes to young NOD mice could not also abrogate the spontaneous diabetes and insulitis. Furthermore, cyclophosphamide treatment could not abrogate the protection. When splenocytes from the treated NOD mice were transferred to NOD-SCID mice, none of the recipient mice developed significant insulitis and subsequent overt diabetes, suggesting the absence or the inactivation of diabetogenic effector T cells. However, splenic T cells from the insulitis-free NOD mice that had received the mAb treatment preserved proliferative responses to both islet cells and 65-kDa glutamic acid decarboxylase (GAD65) in vitro. These results suggest that a unique peripheral tolerance was induced by the transient blockade of the LFA-1/ICAM-1 pathway in an early age of NOD mice.  相似文献   

11.
It has been established that insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice results from a CD4+ and CD8+ T cell-dependent autoimmune process directed against the pancreatic beta cells. The precise roles that beta cell-reactive CD8+ and CD4+ T cells play in the disease process, however, remain ill defined. Here we have investigated whether naive beta cell-specific CD8+ and CD4+ T cells can spontaneously accumulate in pancreatic islets, differentiate into effector cells, and destroy beta cells in the absence of other T cell specificities. This was done by introducing Kd- or I-Ag7-restricted beta cell-specific T cell receptor (TCR) transgenes that are highly diabetogenic in NOD mice (8.3- and 4.1-TCR, respectively), into recombination-activating gene (RAG)-2-deficient NOD mice, which cannot rearrange endogenous TCR genes and thus bear monoclonal TCR repertoires. We show that while RAG-2(-/-) 4.1-NOD mice, which only bear beta cell-specific CD4+ T cells, develop diabetes as early and as frequently as RAG-2+ 4.1-NOD mice, RAG-2(-/-) 8.3-NOD mice, which only bear beta cell-specific CD8+ T cells, develop diabetes less frequently and significantly later than RAG-2(+) 8.3-NOD mice. The monoclonal CD8+ T cells of RAG-2(-/-) 8.3-NOD mice mature properly, proliferate vigorously in response to antigenic stimulation in vitro, and can differentiate into beta cell-cytotoxic T cells in vivo, but do not efficiently accumulate in islets in the absence of a CD4+ T cell-derived signal, which can be provided by splenic CD4+ T cells from nontransgenic NOD mice. These results demonstrate that naive beta cell- specific CD8+ and CD4+ T cells can trigger diabetes in the absence of other T or B cell specificities, but suggest that efficient recruitment of naive diabetogenic beta cell-reactive CD8+ T cells to islets requires the assistance of beta cell-reactive CD4+ T cells.  相似文献   

12.
Optimal T cell responsiveness requires signaling through the T cell receptor (TCR) and CD28 costimulatory receptors. Previously, we showed that T cells from autoimmune nonobese diabetic (NOD) mice display proliferative hyporesponsiveness to TCR stimulation, which may be causal to the development of insulin-dependent diabetes mellitus (IDDM). Here, we demonstrate that anti-CD28 mAb stimulation restores complete NOD T cell proliferative responsiveness by augmentation of IL-4 production. Whereas neonatal treatment of NOD mice with anti-CD28 beginning at 2 wk of age inhibits destructive insulitis and protects against IDDM by enhancement of IL-4 production by islet-infiltrating T cells, administration of anti-CD28 beginning at 5-6 wk of age does not prevent IDDM. Simultaneous anti-IL-4 treatment abrogates the preventative effect of anti-CD28 treatment. Thus, neonatal CD28 costimulation during 2-4 wk of age is required to prevent IDDM, and is mediated by the generation of a Th2 cell-enriched nondestructive environment in the pancreatic islets of treated NOD mice. Our data support the hypothesis that a CD28 signal is requisite for activation of IL-4-producing cells and protection from IDDM.  相似文献   

13.
To determine whether the genetic background of the insulin-producing beta cells of the pancreas contributes to autoimmune diabetes susceptibility, we have used a model of the disease based on transferring spleen cells from nonobese diabetic (NOD) <--> C57BL/6 (B6) embryo aggregation (EA) chimeras into B6 and NOD irradiated mice. Insulitis and diabetes could be induced into both B6 and NOD hosts, albeit with low incidence. Cyclophosphamide (CY) treatment, known to accelerate diabetes in prediabetic NOD mice, was found to increase diabetes incidence up to 50-60% in both B6 and NOD mice reconstituted with chimeric splenocytes, while diabetes did not occur in CY-treated B6 mice reconstituted with B6 splenocytes. We conclude that the genetic make-up of the target organ does not affect the final stage of the pathogenesis of insulin-dependent diabetes mellitus.  相似文献   

14.
The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sj?gren's syndrome. NOD.Igmu null mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igmu null mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab')2 fragments from parental NOD mice or human primary Sj?gren's syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sj?gren's syndrome.  相似文献   

15.
BACKGROUND: We performed ex vivo adenoviral gene transfer in a mouse pancreatic islet transplant model to test the efficacy of this expression system. We then determined whether adenoviral-mediated expression of mouse interleukin (IL) 4 or IL-10 from transduced syngeneic islet grafts could prevent disease recurrence in diabetic nonobese diabetic (NOD) mice. METHODS: An adenoviral vector expressing beta-galactosidase (AdCMV betaGal) was used to transduce BALB/c islets (2.5 x 10(3) plaque-forming units/islet), which were analyzed for glucose responsiveness, islet cell recovery, and efficiency of gene transfer. In vivo function and reporter gene expression were examined with AdCMV betaGal-transduced islet grafts in alloxan-induced diabetic syngeneic recipients. Adenoviruses expressing either IL-4 or IL-10 were used in a similar fashion to infect NOD islets, which were characterized in vitro, as well as transplanted into diabetic syngeneic recipients. RESULTS: In vitro functional studies showed no significant difference between control or transduced islets, with 50+/-4% of AdCMV betaGal-infected islet cells staining positive for beta-galactosidase. Transplant recipients became nomoglycemic within 48 hr after transplant, and, although beta-galactosidase expression decreased over time, it was detectable in the graft for up to 8 weeks. Despite the nanogram quantities of IL-4 or IL-10 produced/day from each graft equivalent in vitro, transduced and transplanted NOD islets failed to prevent disease recurrence. CONCLUSIONS: These results suggest that adenoviruses are efficient for at least medium term gene expression from islets in vivo, but neither IL-4 nor IL-10 alone can prevent autoimmune disease recurrence in NOD mice.  相似文献   

16.
17.
18.
Glutamic acid decarboxylase (GAD) has been defined as a major target antigen in insulin-dependent diabetes mellitus (IDDM). To identify the molecular ligands triggering a T cell response to GAD, a panel of human GAD65-specific T lymphocyte lines was generated from peripheral blood of three recent onset IDDM patients. All lines derived from a patient expressing the high-risk-conferring HLA-DR*0301/ *0401 haplotypes recognized a single epitope localized between amino acid positions 270 and 283 of GAD65, a stretch that is located in close proximity to the homology region shared with Coxsackie virus P2-C protein. All lines with this specificity were restricted to the DRA, B1*0401 product of the DR4 haplotype. Analysis of the GAD-specific T cell response in a second patient homozygous for DR4 haplotypes demonstrated that the same DRA, B1*0401 allele selected T cells specific for a different determinant. The T cell response profile in a third patient showed that DR*1501/ *1601-encoding haplotypes could present at least three different epitopes to GAD65-specific T lymphocytes. One of these epitopes was presented by a DR allele associated with the resistance-conferring DRB1*1501 haplotype. GAD-specific T cell lines could not be isolated from HLA class II-matched normal individuals. Our data reveal that (a) the T cell response to GAD65 is quite heterogenous in recent onset IDDM patients; (b) HLA-DR, not DQ, seems to be the principal restriction element used by T cells present at the onset of the disease; and (c) T cells responding to epitopes containing identical sequences to Coxsackie virus P2-C protein were not detected.  相似文献   

19.
IDDM can be induced in nonobese diabetic (NOD) mice in several ways, including high doses of cyclophosphamide and transfer of diabetic spleen cells to sublethally irradiated recipients. It has previously been established that transferred diabetes can be prevented by treatment with a nondepleting CD4 monoclonal antibody; however, we report herein that cyclophosphamide-induced diabetes also can be prevented using this antibody. The protection induced by CD4 monoclonal antibody to transferred diabetes is maintained for a long period after cessation of antibody treatment. However, cyclophosphamide can abrogate this induced tolerance and we report that this abrogation does not require new T-cells. During the course of the experimental work described, we observed that the thymus had a suppressive effect on the expression of transferred disease. Mice that were depleted of their peripheral T-cells showed a doubling of the time for disease expression if they were euthymic, compared with thymectomized mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号