首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
利用快速压缩装置进行直喷天然气发动机燃烧特性的研究   总被引:13,自引:6,他引:7  
利用快速压缩装置开展了直喷天然气发动机燃烧特性的研究,分析了3种不同喷射方式下的燃烧特性并与均相混合气燃烧进行了对比。研究结果:上喷天然气燃烧比均相混合气燃烧的最大压力高,在宽广的当量比范围内具有短的火娄发展期和快速燃烧,克燃烧放热率和压力升高率基本上与喷射方式无关。喷射方式与均相混合气相比,燃烧放热率,压力升高率大。缩短喷油和点火间的时间间隔将缩短火焰发展期和快速燃烧期,其时间间隔的优化对直喷天然气发动机极为重要。直喷天然气发动机的燃烧方式为预混控制充量分层燃烧,此燃烧方式燃烧速率,排放低。  相似文献   

2.
利用快速压缩装置进行了天然气直喷分层燃烧可行性的研究。结果表明 :天然气分层燃烧具有短的初期火焰发展期和主燃期以及高的燃烧压力。分层燃烧可使稀燃极限延伸到很小的当量比。由于过度分层 ,CO在当量比大于 0 .8时急剧增加 ,而 NOx 的峰值也因充量分层而出现在小当量比处。燃烧效率在当量比处于0 .1~ 0 .9范围时高于 0 .92 ,在极小当量比时由于未燃混合气淬熄 ,在当量比时由于过度分层而使燃烧效率降低。根据燃烧产物计算的燃烧效率与根据放热分析获得的燃烧效率一致。因此 ,天然气直喷分层燃烧在宽广的当量比范围内可望实现高效燃烧火花助燃发动机的宽广的高效燃烧。  相似文献   

3.
不同喷射时刻缸内直喷天然气燃烧特性   总被引:4,自引:0,他引:4  
利用快速压缩装置研究不同喷射沓刻缸内直喷天然气燃烧特性。结果表明,天然气直喷燃烧可实现快速燃烧,缩短喷射时刻与点火时刻的时间差可明显缩短燃烧期。与均匀混合气燃烧相比,碳氢的排放增加,缩短喷射时刻与点火时刻的时间差可达到均匀混合气燃烧时相同的排放量。在很宽的当量比范围内,NOx增加,而CO仍维持很低数值,且不受喷射时刻的影响,直喷天然气燃烧可实现较高的压力升高值,且其数值不受喷射时刻的影响,所达到的高燃烧效率也不受喷射时刻的影响。  相似文献   

4.
利用快速压缩装置对直喷天然气发动机的效率进行了分析。在宽广的当量比范围内,分析了三种燃料喷射方式下和均匀混合气燃烧时的燃烧效率。结果表明,燃油喷射方式下的燃烧效率在0.2-0.9当量比范围内均具有较高的数值并与喷射方式无关;在当量比小于0.2和大于0.9时,由于CO的原因,使燃烧效率降低。均匀混合气燃烧时,燃烧效率在当量比大于0.7时较高,而当量比小于0.7时,由于很高的未燃甲烷的生成使燃烧效率损失较大。燃料喷射燃烧与均匀混合气燃烧相比,维持高燃烧的比范围宽。因未燃甲烷的生成造成的燃烧效率的损失与喷油时刻无关,因CO造成的燃烧效率的损失随喷油滞后而增加。  相似文献   

5.
利用定容燃烧弹开展了天然气掺混0%~40%氢气混合燃料直喷燃烧循环变动研究,高压气体燃料(8.0 MPa)喷入定容燃烧弹模拟直喷发动机燃烧条件.在整体当量比为0.6和0.8下,试验采集了火焰发展图片和燃烧过程容弹内压力,从火焰发展图片和燃烧特征参数两个方面分析了掺氢和混合气分层分布对天然气直喷燃烧循环变动的影响.结果表明:燃烧循环变动起始于火焰发展初期阶段.随着掺氢比增加,火焰形态更规则且更集中于点火电极.同时,由于直喷燃烧方式混合气分层分布,能够实现低循环变动的稳定稀燃.循环变动随着掺氢比的增加而减小,这种趋势在稀燃工况((b=0.6)下更加明显.在直喷燃烧方式下,由于混合气分层分布减弱了火焰发展初期阶段对后续燃烧过程的影响,因此燃烧特征参数间呈现相互独立的关系.  相似文献   

6.
为了使天然气发动机在采用机内净化措施的情况下大幅度降低NOx排放,满足未来的排放法规,试验研究了3种稀释方式(空气稀释、当量燃烧+EGR稀释、空气与EGR双重稀释)对稀燃天然气发动机控制NOx排放潜力的影响,并考察了燃烧边界条件的改变对发动机燃烧及排放性能的影响。研究结果表明:通过燃烧边界条件优化,3种稀释方式均能使发动机NOx排放满足国-Ⅳ及国-Ⅴ排放标准,在同等NOx排放前提下,对其经济性而言,双重稀释方式优于空气稀释方式,空气稀释方式优于当量燃烧+EGR稀释方式。  相似文献   

7.
基于一台单缸柴油机,采用进气道喷射乙醇同时缸内直喷柴油的方式实现双燃料预混压缩着火(PCI)燃烧模式.固定发动机转速和负荷,通过调整预混乙醇比例以及柴油直喷策略,实现了不同程度的混合气燃料分层,并测量了相应的发动机循环波动特性,试验中NOx排放和COVIMEP分别控制在0.4 g/(kW·h)和7%以下.结合数值模拟研究了混合气燃料分层对双燃料发动机循环波动的影响,结果表明:燃料分层直接影响双燃料发动机循环波动.首先,着火正时在上止点附近时有助于降低双燃料发动机循环波动,乙醇预混当量比、柴油直喷中主喷油量以及主喷正时直接影响混合气初始着火区域燃料活性以及当量比,进而影响混合气着火正时.其次,混合气着火正时稳定性对于保证双燃料发动机燃烧稳定性较为关键.此外,燃烧相位以及缸内爆压不变,采用较高的乙醇预混比例结合推迟的主喷正时可以实现更加稳定的着火,进而降低双燃料发动机循环波动率.  相似文献   

8.
利用快速压缩装置研究天然气直喷燃烧循环变动   总被引:1,自引:2,他引:1  
利用快速压缩装置研究了天然气直喷燃烧循环变动,研究结果表明:借助于分层燃烧和由燃料喷射的湍流引发的快速火焰传播,天然气直喷燃烧在小当量比条件下能实现良好的燃烧稳定性,低的压力峰值循环变动,低的压力升高率峰值循环变动和低的燃烧放热率峰值循环变动,研究发现燃烧期和燃烧产物的循环变动。CO和未燃碳氢的循环变动依赖于后续燃烧期的循环变动,NOx的循环变动依赖于快速燃烧期的循环变动。在燃烧最佳喷射条件下,天然气直喷燃烧的循环变动随当量比的变化并不敏感。  相似文献   

9.
在一台4102直喷柴油机上研究了二甲醚(DME)均质压燃,柴油补燃混合燃烧模式对发动机性能、排放、油耗和燃烧特性的影响。试验结果表明,采用混合燃烧模式能有效降低发动机的碳烟排放及低负荷区域的NOx排放,但在整个工作区域内发动机的当量燃油耗偏高。此外,通过燃烧分析发现,大部分负荷下采用混合燃烧模式的发动机气缸最高燃烧压力比采用纯柴油的高,但最大压力升高率和压力升高加速度却比较低,因此发动机运行比较柔和。  相似文献   

10.
在缸内直喷汽油机(GDI)上采用多次燃油喷射和可变配气技术来控制缸内混合气形成和燃烧,实现了SI/HCCI复合燃烧方式。研究了不同压缩比和辛烷值对均质混合气压燃(HCCI)燃烧排放特性的影响。结果表明,汽油HCCI燃烧呈现单阶段燃烧燃料特性,HCCI着火发生在上止点附近时油耗低。低压缩比下,HCCI燃烧可以在较浓空燃比下工作,NOx排放较高。高辛烷值燃料HCCI燃烧可运行的负荷范围窄。汽油HCCI发动机在偏高压缩比条件下燃用偏低辛烷值汽油可以获得较好的经济性和排放性能。  相似文献   

11.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

12.
In traffic transportation, the use of low-carbon fuels is the key to being carbon-neutral. Hydrogen-enhanced natural gas gets more and more attention, but practical engines fueled with it often suffer from low engine power output. In this study, the inner mechanism of hydrogen direct injection on methane combustion was optically studied based on a dual-fuel supply system. Simultaneous pressure acquisition and high-speed direct photography were used to analyze engine performance and flame characteristics. The results show that lean combustion can improve methane engine's thermal efficiency, but is limited by cyclic variations under high excess air coefficient conditions. Hydrogen addition mainly acts as an ignition promoter for methane lean combustion, as a result, the lean combustion limit and thermal efficiency can be improved. As for hydrogen injection timing, late injection can increase the in-cylinder turbulence intensity but also the inhomogeneity, so a suitable injection timing is needed for improving the engine's performance. Besides, late hydrogen injection is more effective under lean conditions because of the reduced mixture inhomogeneity. The current study shall give some insights into the controlling strategies for natural gas/hydrogen engines.  相似文献   

13.
This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.  相似文献   

14.
This study investigated the effect of hydrogen content in producer gas on the performance and exhaust emissions of a supercharged producer gas–diesel dual-fuel engine. Two types of producer gases were used in this study, one with low hydrogen content (H2 = 13.7%) and the other with high hydrogen content (H2 = 20%). The engine was tested for use as a co-generation engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant injection pressure and injection quantity for different fuel–air equivalence ratios and at various injection timings. The experimental strategy was to optimize the injection timing to maximize engine power at different fuel–air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion. Better combustion, engine performance, and exhaust emissions (except NOx) were obtained with the high H2-content producer gas than with the low H2-content producer gas, especially under leaner conditions. Moreover, a broader window of fuel–air equivalence ratio was found with highest thermal efficiencies for the high H2-content producer gas.  相似文献   

15.
压缩比对直喷天然气发动机燃烧与排放特性的影响   总被引:3,自引:0,他引:3  
在缸内直喷火花点火天然气发动机上开展了压缩比为8、10、12和14的燃烧和排放特性研究。研究结果表明,压缩比对发动机性能、燃烧和排放有较大影响。压缩比增加,发动机充量系数增加,燃烧速率加快,热效率提高。缸内最高燃烧压力、最高燃气平均温度和最大压力升高率等燃烧参数随压缩比的增加而增加;HC和CO排放随压缩比的增加而降低,NOx随压缩比的增加而增加。压缩比过高会导致HC排放的增加,当压缩比大于12时,发动机在中高负荷出现轻微爆燃现象,NOx排放明显增加。综合考虑直喷式天然气发动机的动力性、经济性和排放性能,认为发动机的最佳压缩比设置在12比较合理。  相似文献   

16.
Hydrogen is a carbon free energy carrier with high diffusivity and reactivity, it has been proved to be a kind of suitable blending fuel of spark ignition (SI) engine to achieve better efficiency and emissions. Hydrogen injection strategy affects the engine performance obviously. To optimize the combustion and emissions, a comparative study on the effects of the hydrogen injection strategy on the hydrogen mixture distribution, combustion and emission was investigated at a SI engine with gasoline intake port injection and four hydrogen injection strategies, hydrogen direct injection (HDI) with stratified hydrogen mixture distribution (SHMD), hydrogen intake port injection with premixed hydrogen mixture distribution (PHMD), split hydrogen direct injection (SHDI) with partially premixed hydrogen mixture distribution (PPHMD) and no hydrogen addition. Results showed that different hydrogen injection strategy formed different kinds of hydrogen mixture distribution (HMD). The ignition and combustion rate played an important role on engine efficiency. Since the SHDI could use two hydrogen injection to organize the HMD, the ignition and combustion rate with the PPHMD was the fastest. With the PPHMD, the brake thermal efficiency of the engine was the highest and the emissions were slight more than that with the PHMD. PHMD achieve the optimum emission performance by its homogeneous hydrogen. The engine combustion and emission performance can be optimized by adjusting the hydrogen injection strategy.  相似文献   

17.
天然气发动机混合气形成与燃烧特点及性能评述   总被引:6,自引:0,他引:6  
宋钧  张武高  黄震 《柴油机》2002,(3):16-20
本文根据天然气发动机混合气的形成特点,把天然气发动机分为预混合燃烧型和非均质扩散燃烧型,并分析了这两种天然气发动机的技术特点、燃烧特点与排放等性能。本文重点介绍了实现非均质扩散燃烧的不同型式高压缸内直喷天然气发动机技术及其性能特点,最后提出非均质扩散燃烧天然气发动机技术需要研究的相关问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号