首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of segmented polyurethanes containing 60 wt° of hard segments (HS) was prepared from MDI (4,4-diphenylmethane diisocyanate) ethylene glycol and mixtures of a polyoxyethylene end-capped polyoxypropylene triol and a polyoxyethylene end-capped polyoxypropylene diol. The effects of the content of polyether diol in polyether polyols on phase separation and properties was investigated by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and investigation of tensile properties. The DSC and DMA results indicate that the polyurethane derived from only polyether triol exhibits obvious phase separation and that the HS is immiscible with the SS, but that the HS is compatible with the HS for the polyurethane derived from polyether diol. As the content of polyether diol increases, the compatibility between HS and SS increases. As the content of polyether diol increases, the tensile strength. elongation. toughness and tear resistance of the polyurethanes increases. but their moduli decrease. The modulus-temperature dependence in the temperature region of –30 to 65 °C increases as the polyether diol content increases.  相似文献   

2.
Yongshang Lu  Patrice Dole 《Polymer》2005,46(23):9863-9870
A waterborne polyurethane (PU) aqueous dispersion was synthesized from castor oil, and blended with thermoplastic starch (TPS) to obtain a novel biodegradable plastic with improved physical properties. The effect of PU content on the morphology, miscibility and physical properties of the resulting blends was well investigated by scanning electron microscopy, differential scanning calorimetry, dynamic mechanical thermal analysis and measurements of mechanical properties and water sensitivity. The research results show that the blends exhibit a higher miscibility when PU content is lower than 15 wt% due to the hydrogen bonding interaction between urethane groups and hydroxyl groups on starch, whereas obviously phase separation occurs in the blends with more than 15 wt% PU. Incorporating PU of 4-20 wt% in TPS results in the blends with improved Young's modulus (40-75 MPa), tensile strength (3.4-5.1 MPa), elongation at break (116-176%). Further, PU also plays an important role in improving the surface- and bulk-hydrophobicity and water resistance of the resulting blends.  相似文献   

3.
Nanohybrids based on UV-curable polyurethane acrylate (PU) and cloisite 20B (C-20B) have been synthesized by solution blending method using different loading levels of C-20B. The structures of PU/C-20B nanohybrids were confirmed by Fourier transform infrared spectroscopy (FTIR) while X-ray diffraction and transmission electron microscopy (TEM) showed the intercalation of PU into layer silicates. The thermal properties of PU and PU/C-20B nanohybrids were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). TGA tests revealed that the thermal decomposition temperature (Td10%) of the nanohybrid containing 5 wt% of C-20B increased significantly, being 61 °C higher than that of pure PU while DSC measurements indicated that the introduction of 5 wt% of clay increased the glass transition temperature from 89.7 to 101 °C. Accordingly, the mechanical and anti-water absorption properties proved also to be enhanced greatly as evidenced by nanoindentation anylsis and water absorptions data in which the nanohybrid containing 5 wt% of clay have highest elastic modulus (4.508 GPa), hardness (0.230 GPa) and lowest water absorption capacity. Thus the formations of nanohybrids manifests through the enhancement of thermal, mechanical and anti-water absorption properties as compared with neat PU due to the nanometer-sized dispersion of layered silicate in polymer matrix.  相似文献   

4.
Phase separation and mechanical responses of polyurethane nanocomposites   总被引:2,自引:0,他引:2  
Nanocomposites of a diamine-cured polyurethane with nanofillers of different kinds, sizes, and surfaces were studied. Atomic force microscopy, scanning electron microscopy, X-ray diffraction, tensile tests, and dynamic mechanical thermal analysis were employed in the experiments. Experimental results suggest that mechanical properties are strongly correlated to polymer phase separation, which depends on the nature of the interface between the polymer and the nanoparticles. Two stages of phase separation were observed: the first stage involves the self-assembly of the hard segments into small hard phases of about 10 nm in width; the second stage involves the assembly of the 10 nm wide hard phases into larger domains of about 40-100 nm in width. In the case of polyurethane/ZnO nanocomposites with 5 wt% (less than 1 vol%) 33 nm ZnO nanoparticles, the covalent bonds that were formed between the polymer and ZnO surface hydroxyl groups constrain both stages of phase separation in polyurethane, resulting in approximately 40% decrease in the Young's modulus, 80% decrease in the strain at fracture, and 11 °C increase in the glass transition temperature of the soft segments. In the case of polyurethane/Al2O3 nanocomposites with 5 wt% 15 nm Al2O3 nanoparticles, hydrogen bonds between the particles and the polymer mainly constrain the second step of the phase separation, resulting in about 30% decrease in the Young's modulus and 12 °C increase in the glass transition temperature, but only a moderate decrease in the strain at fracture. The most striking results come from polyurethane/clay composites, where only van der Waals type interactions exist between polyurethane and the organically modified clay (Cloisite 20A). With the addition of 5 wt% surface modified clay (Cloisite 20A), both the Young's modulus and the strain at fracture decrease more than 80%, but the glass transition temperature increases by about 13 °C. Adding 10 wt% Cloisite 20A into polyurethane almost totally disrupts the phase separation, resulting in a very soft composite that resembles a “viscous liquid” rather than a solid.  相似文献   

5.
A series of polyurethane networks were prepared from MDI (4,41-diphenyl methane diisocyanate), ethylene glycol and a polyoxyethylene-tipped polyoxypropylene triol. The phase separation and phase inversion phenomena of these polyurethane networks were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and measurement of their tensile properties. The DSC and DMA data indicate that the segmented copolyurethanes possess a two-phase morphology comprising soft and hard segments. It can be found from DSC data that the polyether soft segments exhibit a Tg (glass transition temperature) of –60 °C, and the aromatic hard segments display a Tg of about 128 °C. Two Tgs corresponding to the comprised segments can also be found by DMA for some segmented polyurethanes. Varying the content of aromatic hard segments over the range from 0 to 80 wt% changes the material behavior from a soft rubber through a highly extensible elastomer to a brittle semi-ductile glassy material. Based on the property-composition plots, phase inversion appears to occur at a hard segment content of about 50 wt%.  相似文献   

6.
The effect of the variables of polydimethylsiloxane (PDMS) soft segment (SS) length, hard segment (HS) type and content as well as choice of chain extender (its MW and symmetry) on the morphology of segmented polyurethane and polyurea copolymers was investigated. The methods of dynamic mechanic analysis, small angle X-ray scattering, atomic force microscopy, and mechanical testing were used in this analysis. Average PDMS MW of 900, 2500 or 7000 g/mol were utilized and the hard segment content ranged from 16 to 50 wt%. HMDI was used as the diisocyanate. All copolymers were synthesized via the prepolymer method. The PDMS MW had a marked effect on the morphology of the materials. Copolymers with PDMS MW of 2500 and 7000 g/mol were clearly found to be well microphase separated relative to those containing the 900 g/mol PDMS SS. The polyurea sample with a PDMS MW of 7000 and HS content of 25 wt% exhibited a remarkable service temperature window (for rubber-like behavior) of ca. 230 °C (from −55 to 175 °C) whereas it was ca. 200 °C wide (from −55 to 145 °C) for the equivalent polyurethane sample. In general, the degree of microphase separation was found to be greater in the polyurea samples due to their more cohesive bidentate hydrogen bonding.  相似文献   

7.
Liquid crystalline (LC) polyurethanes were made from two diisocyanates (flexible HMDI and stiff TDI) (DIs), mesogenic diol (D) and a polybutadiene-diol (B) with stoichiometric ratios of reactive hydroxy (OH) and isocyanate (NCO) groups ((NCO)DI/((OH)D+(OH)B)=1/1). Two- (B/DIs, D/DIs) and three-component ((D+B)/DIs, D/B=1/1 by weight) polymers were prepared and their dielectric, dynamic mechanical and DSC behavior was investigated. For neat B, the glass transition temperature TgB (∼−46 °C) was detected. Two-component B/HMDI and B/TDI polymers have exhibited a homogeneous structure with the glass transition temperatures TgU∼−9 and 2 °C. On the other hand, for D/DI polymers on cooling from the melt and subsequent heating the glass transitions at TgU∼41 °C (D/HMDI) and 58 °C (D/TDI) together with nematic and smectic mesophases were found. In three-component systems, additional glass transitions at TgB∼−41 °C (B/D/HMDI) and −31 °C (B/D/TDI) were observed. This means that the polymers exhibit a distinct two-phase structure with soft polybutadiene (B) and hard polyurethane (D/DI) phases. In hard polyurethane phase, the glass transitions at TgU and LC mesophases similar to those found in two-component D/DI polyurethanes were detected. Dielectric and dynamic mechanical results correlate well with DSC measurements.  相似文献   

8.
In the present study, the microstructural evolution and high temperature deformation behaviours of 8 mol% Y2O3 stabilized cubic zirconia (8YCSZ) containing up to 10 wt% SiO2 is investigated. The experimental results show that the SiO2 doped specimens sintered at 1400 °C contain only the cubic crystalline phase and SiO2 has the very limited solubility of 0.3 wt% in cubic zirconia. This suggests that only small part of the SiO2 dissolves in the cubic zirconia and the rest of SiO2 segregates at grain boundaries and multiple junctions as amorphous (glassy) phase. This glassy phase prevents the grain growth by minimizing grain boundary energy and mobility, which results from solute segregation at the grain boundary and its drag. The deformation of the undoped 8YCSZ is characterized by large strain hardening with limited elongation. This is mainly due to severe grain growth during high temperature deformation. The addition of the SiO2 results in a decrease in strain hardening and enhanced tensile elongation. These effects have been further improved with the increase of the SiO2 addition reaching the elongation to failure of 152% for 10 wt% SiO2 doped specimen in tension at a temperature of 1400 °C and strain rate of 1.3 × 10−4 s−1. The decreased strain hardening and increased ductility in the SiO2 doped specimens are due to the segregation of amorphous glassy phase to the grain boundaries, thus hindering grain growth and facilitating grain boundary sliding, which is the primary mechanism of deformation in fine grained materials at high temperatures.  相似文献   

9.
Yongshang LuLina Zhang 《Polymer》2002,43(14):3979-3986
A series of semi-interpenetrating polymer network (semi-IPN) films coded as UB from castor oil-based polyurethane (PU) and benzyl konjac glucomannan (B-KGM) were prepared, and they have good or certain miscibility over entire composition range. Morphology, miscibility and properties of the UB films were investigated by using scanning electron microscopy (SEM), differential scanning calorimetry, dynamic mechanical analysis, ultraviolet spectrometer, wide-angle X-ray diffraction and tensile test. The results indicated that the UB films exhibited good miscibility when B-KGM content was lower than 15 wt%, resulting in relatively high light transmittance, breaking elongation and density. With an increase of the B-KGM content from 20 to 80 wt%, a certain degree of phase separation between PU and B-KGM occurred in the UB films. The tensile strength of the films UB increased from 7 to 45 MPa with an increase of B-KGM content from 0 to 80 wt%. By extracting the B-KGM with N, N-dimethylformamide from the semi-IPN, the morphology and phase domain size of the UB films were clearly observed by SEM. A continuous phase and dual-continuous phase model describing the semi-IPN were proposed to illustrate the morphology and its transition.  相似文献   

10.
Geon-Woong Lee 《Polymer》2008,49(7):1831-1840
Nitric acid treated single and multi wall carbon nanotubes (SWNT and MWNT) have been dispersed in polypropylene using maleic anhydride grafted polypropylene (MA-g-PP) and butanol/xylene solvent mixture. SWNT exfoliation was characterized by Raman and UV-vis-NIR spectroscopies. Evidence for hydrogen bonding between maleic anhydride grafted polypropylene and nitric acid treated nanotubes was obtained using infrared spectroscopy. Polypropylene/carbon nanotube composites were melt-spun into fibers. Dynamic mechanical studies show that for fibers containing 0.1 wt% SWNT, storage modulus increased by 5 GPa at −140 °C and by about 1 GPa at 100 °C, suggesting temperature dependent interfacial strength. The crystallization behavior has been monitored using differential scanning calorimetry and optical microscopy. Control fibers exhibited 27% shrinkage at 160 °C, while the shrinkage in the composite fibers was less than 5%. Fibers heat-treated to 170 °C show very narrow polypropylene melting peak (peak width about 1 °C).  相似文献   

11.
Two series of polyurethanes were synthesized using one‐ and two‐step reactions in a bulk phase at 175 °C with polycaprolactone diol, butane‐1,4‐diol, and 4,4‐diphenylmethane diisocyanate (MDI) in a suspension of starch granules to observe cross‐linking phenomena. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) analysis, and complex viscosity η*(ω), storage G′(ω), and loss‐modulus G″(ω) as rheological measurements, were carried out to characterize the cross‐linking in the polyurethane incorporated with starch. SEM micrographs indicated that grafted polyurethane was cross‐linked between starch granules forming a three‐dimensional network. The plots of η* against ω, and log G′ against log G″ showed that the starch content increased cross‐linking, so as to induce gelation (G′G″). However, the cross‐linked networking was decreased over the higher range of starch contents (> 33 wt.‐% for the low hard‐segment series, psb2m3 and > 27 wt.‐% for the high hard‐segment series, psb4m5). Cross‐linking is also enhanced in the high hard‐segment series compared to the low hard‐segment series. Increasing the catalyst concentration also enhanced the cross‐linking inside of the polyurethane phase.

Plots of η* against ω for p7s3b4m5(OSR C0.01) and p7s3b4m5(TSR C0.01).  相似文献   


12.
Umaprasana Ojha 《Polymer》2009,50(15):3448-14168
The synthesis of polyisobutylene (PIB) based thermoplastic polyurethanes (TPU) with enhanced mechanical properties have been accomplished using poly(tetramethylene oxide) (PTMO) as a compatibilizer. PIB TPUs with Shore 60-100 A hardness were prepared by employing PIB diols (hydroxyallyl telechelic PIBs) for the soft segment and 4,4′-methylenebis(phenylisocyanate) (MDI) and 1,4-butanediol (BDO) for the hard segment. The TPUs exhibited number average molecular weight (Mn) in the range of 83,000-110,000 g/mol with polydispersity indices (PDIs) = 1.8-3.1. These TPUs, however, were inferior compared to commercial TPUs such as Pellethane™ (Dow Chemical Co.) as they exhibited low tensile strength (6-15 MPa) and/or ultimate elongation (30-400%). Processing of the harder compositions was also difficult and some could not be compression molded into flat sheets for testing. Differential Scanning Calorimetry (DSC) showed the presence of high melting (≥200 °C) crystalline hard segments suggesting longer - MDI-BDO - sequences than expected based on the stoichiometry. Easily processable TPUs with excellent mechanical properties (tensile strength up to 40 MPa, ultimate elongation up to 740%) were obtained by incorporating PTMO in the soft segment. Examination of PIB-PTMO TPUs with varying hard: soft compositions (20:80, 35:65 and 40:60 wt:wt) and Shore hardness (60 A, 80 A and 95 A) indicated that substituting 10-30 wt% of PIB diol with PTMO diol is sufficient to reach mechanical properties similar to Pellethanes.  相似文献   

13.
The blends of poly(l-lactide) (PLLA) with poly(butylene succinate-co-l-lactate) (PBSL) containing the lactate unit of ca. 3 mol% and Rikemal PL710 (RKM) which is a plasticizer mainly composed of diglycerine tetraacetate were prepared by melt-mixing and subsequent injection molding. The studied RKM content of the PLLA/PBSL/RKM blends was 0-20 wt%, and the PLLA/PBSL weight ratio was 100/0 to 80/20. Although elongation at break in the tensile test did not increase by the addition of 10 wt% RKM to PLLA, the addition of a small amount of PBSL to the PLLA/RKM blend caused a considerable increase of the elongation. The SEM and DSC analyses revealed that all the PLLA/PBSL/RKM blends are immiscible blends where the PBSL particles are finely dispersed, and that there is some compatibility between PLLA-rich phase and PBSL-rich phase in the amorphous state when the RKM content is 20 wt%. As a result of investigation of the crystallization behavior by DSC and polarized optical microscopic measurements, it was revealed that the addition of RKM causes the acceleration of crystalline growth rate at a lower annealing temperature, and the addition of PBSL mainly enhances the formation of PLLA crystal nucleus.  相似文献   

14.
Weihua Zhou 《Polymer》2007,48(13):3858-3867
Syndiotactic polystyrene (sPS) blends with highly-impact polystyrene (HIPS) were prepared with a twin-screw extruder. Isothermal crystallization, melting behavior and crystalline morphology of sPS in sPS/HIPS blends were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). Experimental results indicated that the isothermal crystallization behavior of sPS in its blends not only depended on the melting temperature and crystallization temperature, but also on the HIPS content. Addition of HIPS restricted the crystallization of sPS melted at 320 °C. For sPS melted at 280 °C, addition of low HIPS content (10 wt% and 30 wt%) facilitated the crystallization of sPS and the formation of more content of α-crystal. However, addition of high HIPS content (50 wt% and 70 wt%) restricted the crystallization of sPS and facilitated the formation of β-crystal. More content of β-crystal was formed with increase of the melting and crystallization temperature. However, α-crystal could be obtained at low crystallization temperature for the specimens melted at high temperature. Addition of high HIPS content resulted in the formation of sPS spherulites with less perfection.  相似文献   

15.
Dong Wook Chae  Byoung Chul Kim 《Polymer》2006,47(10):3609-3615
The addition of silicalite-1 nanoparticles (0.2-20 wt%) increased slightly the crystallization temperature of HDPE with silicalite-1 content, at 20 wt% loading by ca. 2.5 °C, but it had little effect on the melting temperature. The nanocomposites displayed a little higher onset degradation temperature than pure polymer by 7-11 °C. The WAXD profiles showed that the intensity of diffraction peaks for HDPE was decreased with increasing silicalite-1 content from 5 wt% but that the peak position of every crystal plane did not shift in the presence of silicalite-1 nanoparticles. The incorporation of the nanoparticles increased the melt viscosity of HDPE with silicalite-1 content. It also increased both storage (G′) and loss modulus (G″). In the so-called Cole-Cole plot, pure HDPE showed a single master curve whose slope was 1.37, while the nanocomposites with 10 and 20 wt% silicalite-1 exhibited the inflection in the low frequency range before which the slopes were 1.22 and 1.02, respectively. Much more accelerated crystallization behavior under shear was observed with silicalite-1 content at the isothermal crystallization temperature of 125 °C than at 120 °C.  相似文献   

16.
Zengshe Liu  Sevim Z. Erhan 《Polymer》2005,46(23):10119-10127
New epoxidized soybean oil (ESO)/clay nanocomposites have been prepared with triethylenetetramine (TETA) as a curing agent. The dispersion of the clay layers is investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD and TEM data reveal the intercalated structure of ESO/clay nanocomposites has been developed. The thermogravimetric analysis exhibits that the ESO/clay nanocomposites are thermally stable at temperatures lower than 180 °C, with the maximum weight loss rate after 325 °C. The glass transition temperature, Tg, about 7.5 °C measured by differential scanning calorimetry (DSC) and Tg about 20 °C measured by dynamic mechanical study have been obtained. The difference in the Tg between DSC and dynamic measurements may be caused by different heating rate. The nanocomposites with 5-10 wt% clay content possess storage modulus ranging from 2.0×106 to 2.70×106 Pa at 30 °C. The Young's modulus (E) of these materials varies from 1.20 to 3.64 MPa with clay content ranging from 0 to 10 wt%. The ratio of epoxy (ESO) to hydrogen (amino group of TETA) greatly affects dynamic and tensile mechanical properties. At higher amount of TETA, the nanocomposites exhibit stronger tensile and dynamic properties.  相似文献   

17.
To increase the photopolymerization rate and improve the properties of UV coatings, polymerizable silica hybrid nanoparticles with tertiary amine structure were prepared. Organic compound with isocyanate group was first grafted onto the surface of nanosilica by reaction of nanosilica with isophorone diisocyanate, then the nanosilica bearing isocyanate group reacted with N,N-di(3-propionic acid, 1,4,7-trimethyl-3,6-dioxaoctane-8-yl acrylate, ester) ethanolamine synthesized from tripropylene glycol diacrylate and ethanolamine. The preparation was characterized by 1H nuclear magnetic resonance (NMR) and Fourier transform infrared spectrometry (FT-IR). Thermogravimetric analysis (TGA) showed that the organic compounds grafted onto the silica decomposed from 256 °C to 650 °C and the grafting percentage based on nanosilica was 105%. The morphology analysis of nanosilica and modified silica by field-emission scanning electron microscopy (FE-SEM) indicated that the silica kept nanosized scale after modification, while the nanosilica dispersion was improved and formation of agglomerates unlikely. Determination of viscosities of coatings with modified nanosilica, it was found that viscosities of the coatings decreased in comparison with the viscosities of coatings with unmodified nanosilica. Compared with pure organic coating, the photopolymerization rate of coatings were faster when modified nanosilica was used from 1 wt% to 5 wt%, but slower when the loadings of modified nanosilica was 7 wt% because co-initiating effects of tertiary amine compound grafted on nanosilica counterbalanced the effects of UV scattering by silica on photopolymerization rate. The hardness and abrasive resistance of cured films also increased and improvement degree was different when the various amounts of modified nanosilica were used.  相似文献   

18.
Microwave ceramics of Ba4(Nd0.7Sm0.3)9.33Ti18O54 with 0–3 wt% Ag additions were synthesized by a citrate sol–gel method. The BaO–B2O3–SiO2 glass was also added into the sol–gel derived BNST ceramic powders as sintering aids. The undoped, Ag- and BaBS-doped samples can be sintered at 1250 °C, 1150 °C and 1000 °C, respectively. The microstructure and dielectric properties were then controlled by doping Ag or BaBS glass. Near isoaxial grains with about 250 nm and typical columnar grains were obtained for the silver-doped and BaBS-doped samples, respectively. For the <1 wt% silver-doped samples, the dielectric constant and Q × f retained unaltered but τf decreased from 9 ppm/°C to 1.4 ppm/°C. With increasing silver content from 1 wt% to 3 wt%, the dielectric constant and τf significantly increased but Q × f decreased. For the BaBS-doped samples, both dielectric constant and Q × f decreased but τf increased with increasing BaBS content.  相似文献   

19.
Nanoclay-tethered shape memory polyurethane nanocomposites   总被引:1,自引:0,他引:1  
Feina Cao 《Polymer》2007,48(13):3790-3800
The study investigated shape memory properties of nanoclay-tethered polyurethane nanocomposites. Polyurethanes based on polycaprolactone (PCL) diol, methylene diisocyanate, and butane diol and their nanocomposites of reactive nanoclay were prepared by bulk polymerization in an internal mixer and the values of shape fixity and shape recovery stress were determined as function of clay content. The melting point of the crystalline soft segment was used as the transition temperature to actuate the shape memory actions. It was seen that clay particles exfoliated well in the polymer, decreased the crystallinity of the soft segment phase, and promoted phase mixing between the hard and soft segment phases. Nevertheless, the soft segment crystallinity was enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. A 20% increase in the magnitude of shape recovery stress was obtained with the addition of 1 wt% nanoclay. The room temperature tensile properties were seen to depend on the competing influence of reduced soft segment crystallinity and the clay content. However, the tensile modulus measured at temperatures above the melting point of the soft segment crystals showed continued increases with clay content.  相似文献   

20.
Imidazolium ionene segmented block copolymers were synthesized from 1,1′-(1,4-butanediyl)bis(imidazole) and 1,12-dibromododecane hard segments and 2000 g/mol PTMO dibromide soft segments. The polymeric structures were confirmed using 1H NMR spectroscopy, and resonances associated with methylene spacers from 1,12-dibromododecane became more apparent as the hard segment content increased. TGA revealed thermal stabilities ≥250 °C for all imidazolium ionene segmented block copolymers. These ionene segmented block copolymers containing imidazolium cations showed evidence of microphase separation when the hard segment was 6-38 wt%. The thermal transitions found by DSC and DMA analysis found that the Tg and Tm of the PTMO segments were comparable to PTMO polymers, namely approximately −80 °C and 22 °C, respectively. In the absence of PTMO soft segments the Tg increased to 27 °C The crystallinity of the PTMO segments was further evidence of microphase separation and was particularly evident at 6, 9 and 20 wt% hard segment, as indicated in X-ray scattering. The periodicity of the microphase separation was well-defined at 20 and 38 wt% hard segment and found to be approximately 10.5 and 13.0 nm, respectively, for these ionenes wherein the PTMO soft segment is 2000 g/mol. Finally, the 38 and 100 wt% hard segment ionenes exhibited scattering from correlations within the hard segment on a length scale of approximately 2-2.3 nm. These new materials present structure on a variety of length scales and thereby provide various routes to controlling mechanical and transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号