首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper develops a new type of hybrid finite element model with regular and special fundamental solutions (also known as Green’s functions) as internal interpolation functions for analyzing plane elastic problems in structures weakened by circular holes. A variational functional used in the proposed model is first constructed, and then, the assumed intra-element displacement fields satisfying a priori the governing partial differential equations of the problem under consideration is constructed using a linear combination of fundamental solutions at a number of source points outside the element domain, as was done in the method of fundamental solutions. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The linkage of these two independent fields and the element stiffness equations in terms of nodal displacements are enforced by the minimization of the proposed variational functional. Special-purpose Green’s functions associated with circular holes are used to construct a special circular hole element to effectively handle stress concentration problems without complicated local mesh refinement or mesh regeneration around the hole. The practical efficiency of the proposed element model is assessed via several numerical examples.  相似文献   

2.
In this paper, a new type of hybrid finite element method (FEM), hybrid fundamental-solution-based FEM (HFS-FEM), is developed for analyzing plane piezoelectric problems by employing fundamental solutions (Green’s functions) as internal interpolation functions. A modified variational functional used in the proposed model is first constructed, and then the assumed intra-element displacement fields satisfying a priori the governing equations of the problem are constructed by using a linear combination of fundamental solutions at a number of source points located outside the element domain. To ensure continuity of fields over inter-element boundaries, conventional shape functions are employed to construct the independent element frame displacement fields defined over the element boundary. The proposed methodology is assessed by several examples with different boundary conditions and is also used to investigate the phenomenon of stress concentration in infinite piezoelectric medium containing a hole under remote loading. The numerical results show that the proposed algorithm has good performance in numerical accuracy and mesh distortion insensitivity compared with analytical solutions and those from ABAQUS. In addition, some new insights on the stress concentration have been clarified and presented in the paper.  相似文献   

3.
In this paper, a new type of hybrid fundamental solution-based finite element method (HFS-FEM) is developed for analyzing plane piezoelectric problems with defects by employing fundamental solutions (or Green’s functions) as internal interpolation functions. The hybrid method is formulated based on two independent assumptions: an intra-element field covering the element domain and an inter-element frame field along the element boundary. Both general elements and a special element with a central elliptical hole or crack are developed in this work. The fundamental solutions of piezoelectricity derived from the elegant Stroh formalism are employed to approximate the intra-element displacement field of the elements, while the polynomial shape functions used in traditional FEM are utilized to interpolate the frame field. By using Stroh formalism, the computation and implementation of the method are considerably simplified in comparison with methods using Lekhnitskii’s formalism. The special-purpose hole element developed in this work can be used efficiently to model defects such as voids or cracks embedded in piezoelectric materials. Numerical examples are presented to assess the performance of the new method by comparing it with analytical or numerical results from the literature.  相似文献   

4.
A local numerical approach to cope with the singular and hypersingular boundary integral equations (BIEs) in non-regularized forms is presented in the paper for 2D elastostatics. The approach is based on the fact that the singular boundary integrals can be represented approximately by the mean values of two nearly singular boundary integrals and on the techniques of distance transformations developed primarily in previous work of the authors. The nearly singular approximations in the present work, including the normal and the tangential distance transformations, are designed for the numerical evaluation of boundary integrals with end-singularities at junctures between two elements, especially at corner points where sufficient continuity requirements are met. The approach is very general, which makes it possible to solve the hypersingular BIE numerically in a non-regularized form by using conforming C0 quadratic boundary elements and standard Gaussian quadratures without paying special attention to the corner treatment.With the proposed approach, an infinite tension plate with an elliptical hole and a pressurized thick cylinder were analyzed by using both the formulations of conventional displacement and traction boundary element methods, showing encouragingly the efficiency and the reliability of the proposed approach. The behaviors of boundary integrals with end- and corner-singular kernels were observed and compared by the additional numerical tests. It is considered that the weakly singularities remain but should have been cancelled with each other if used in pairs by the corresponding terms in the neighboring elements, where the corner information is included naturally in the approximations.  相似文献   

5.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The hybrid-Trefftz stress element is used to emulate conventional finite elements for analysis of Kirchhoff and Mindlin-Reissner plate bending problems. The element is hybrid because it is based on the independent approximation of the stress-resultant and boundary displacement fields. The Trefftz variant is consequent on the use of the formal solutions of the governing Lagrange equation to approximate the stress-resultant field. In order to emulate conventional elements, nodal functions are used to approximate the displacements on the boundary of the element. Duality is used to set up the element solving system. The associated variational statements and conditions for existence and uniqueness of solutions are recovered. Triangular and quadrilateral elements are tested and characterized in terms of convergence, sensitivity to shear-locking, and shape distortion. Their relative performance is assessed using assumed strain Mixed Interpolation of Tensorial Components (MITC) elements and recently proposed Trefftz-based elements. This relative assessment is extended to a hypersingular problem to illustrate the effect of enriching the domain and boundary approximation bases.  相似文献   

7.
In order to develop robust finite element models for analysis of thin and moderately thick plates, a simple hybrid displacement function element method is presented. First, the variational functional of complementary energy for Mindlin–Reissner plates is modified to be expressed by a displacement function F, which can be used to derive displacement components satisfying all governing equations. Second, the assumed element resultant force fields, which can satisfy all related governing equations, are derived from the fundamental analytical solutions of F. Third, the displacements and shear strains along each element boundary are determined by the locking‐free formulae based on the Timoshenko's beam theory. Finally, by applying the principle of minimum complementary energy, the element stiffness matrix related to the conventional nodal displacement DOFs is obtained. Because the trial functions of the domain stress approximations a priori satisfy governing equations, this method is consistent with the hybrid‐Trefftz stress element method. As an example, a 4‐node, 12‐DOF quadrilateral plate bending element, HDF‐P4‐11 β, is formulated. Numerical benchmark examples have proved that the new model possesses excellent precision. It is also a shape‐free element that performs very well even when a severely distorted mesh containing concave quadrilateral and degenerated triangular elements is employed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This work presents a formulation for thick plates following Mindlin theory. The fundamental solution takes into account an assumed displacement distribution on the thickness, and was derived by means of Hormander operator and the Radon transform. To compute the inverse Radon transform of the fundamental solution, some numerical integrals need to be computed. How these integrations are carried out is a key point in the performance of the boundary element code. Two approaches to integrate fundamental solutions are discussed. Integral equations are obtained using Betti's reciprocal theorem. Domain integrals are exactly transformed into boundary integrals by the radial integration technique.  相似文献   

9.
The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592–600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.  相似文献   

10.
In bending problems of Mindlin–Reissner plate, the resultant forces often vary dramatically within a narrow range near free and soft simply‐supported (SS1) boundaries. This is so‐called the edge effect or the boundary layer effect, a challenging problem for conventional finite element method. In this paper, an effective finite element method for analysis of such edge effect is developed. The construction procedure is based on the hybrid displacement function (HDF) element method [1], a simple hybrid‐Trefftz stress element method proposed recently. What is different is that an additional displacement function f related to the edge effect is considered, and its analytical solutions are employed as the additional trial functions for the first time. Furthermore, the free and the SS1 boundary conditions are also applied to modify the element assumed resultant fields. Then, two new special elements, HDF‐P4‐Free and HDF‐P4‐SS1, are successfully constructed. These new elements are allocated along the corresponding boundaries of the plate, while the other region is modeled by the usual HDF plate element HDF‐P4‐11 β [1]. Numerical tests demonstrate that the present method can effectively capture the edge effects and exactly satisfy the corresponding boundary conditions by only using relatively coarse meshes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The stress intensity factors for cracks in three-dimensional, thermally stressed structures are computed by using the boundary element method. While many boundary and volume-integral-based formulations are available for the treatment of thermoelastic problems in solids, the present analysis is based on a recently developed boundary-only formulation. The accuracy of the solutions in the present work is improved by using special elements at the crack front that accurately model the variation of displacement, temperature fields and singularity of traction, flux fields.  相似文献   

12.
Hybrid stress elements are known to provide accurate results for analyses of plate bending; in particular, for the prediction of moment distribution. The construction of hybrid stiffness matrix requires numerical inversion of a moment matrix, evaluation of some relatively complicated boundary integrals and several matrix transformations. Each of these operations can be time-consuming, and the matrix inversion can result in a loss of numerical accuracy. This paper devises methods to explicitly invert the moment matrices. We find that for triangular elements the inverse is independent of the element shape and is only inversely proportional to its size. We also use a novel set of displacement variables, which greatly simplifies the boundary integration. The displacement variables are chosen in a hierarchical form so that lower order elements can be determined by straightforward reduction of excess terms in a higher order element. Except for the nodal displacements at the vertices, the present approach involves only variables at the midpoints of the sides of an element.  相似文献   

13.
A novel hybrid finite element method based on a numerical procedure is proposed to compute singular field near V-shaped notch corners in an anisotropic material containing polygonal holes. The finite element method is established by the following three steps: (1) an ad hoc one-dimensional finite element formulation is employed to determined numerical eigensolutions of the singular field near an V-shaped notch corner; (2) a super corner tip element is constructed to determine the strength of the singular field, in which the independent assumed stress fields are extracted from the eigensolutions; (3) a novel hybrid finite element equation is obtained by coupling the super corner tip element with the conventional hybrid stress elements. In numerical examples, generalized stress intensity factors for interactions between two polygonal holes with various geometry, space position and material property are mainly discussed. All the numerical results show that present method yields satisfactory singular stress field solutions with fewer elements. Compared with the conventional finite element methods and integral equation methods, the present method is more suitable for dealing with micromechanics of anisotropic materials.  相似文献   

14.
Three-dimensional shear mode fundamental fields in finite bodies with mixed boundary conditions are analyzed by a special finite element method for circular and elliptical cracks. A procedure for determining the Fourier coefficients of the stress intensity factor for circular cracks is presented. A special series is proposed to represent the computed crack face weight functions for elliptical cracks.  相似文献   

15.
This paper presents a boundary element analysis of elliptical cracks in two joined transversely isotropic solids. The boundary element method is developed by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of stress intensity factors (SIFs) are obtained by using crack opening displacements. The results of the proposed method compare well with the existing exact solutions for an elliptical crack parallel to the isotropic plane of a transversely isotropic solid of infinite extent. Elliptical cracks perpendicular to the interface of transversely isotropic bi-material solids of either infinite extent or occupying a cubic region are further examined in detail. The crack surfaces are subject to the uniform normal tractions. The stress intensity factor values of the elliptical cracks of the two types are analyzed and compared. Numerical results have shown that the stress intensity factors are strongly affected by the anisotropy and the combination of the two joined solids.  相似文献   

16.
This paper concerns stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure calculated by means of a boundary element method, which consists of constant displacement discontinuity element presented by Crouch and Starfied and crack tip displacement discontinuity elements proposed by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Numerical examples are included to show that the method is very efficient and accurate for calculating stress intensity factors of plane elasticity crack problems. Specifically, the numerical results of stress intensity factors of cracks emanating from a triangular or square hole in an infinite plate subjected to internal pressure are given.  相似文献   

17.
A numerical analysis of cracks emanating from a square hole in a rectangular plate in tension is performed using a hybrid displacement discontinuity method (a boundary element method). Detailed solutions of the stress intensity factors (SIFs) of the plane elastic crack problem are given, which can reveal the effect of geometric parameters of the cracked body on the SIFs. By comparing the calculated SIFs of the plane elastic crack problem with those of the centre crack in a rectangular plate in tension, in addition, an amplifying effect of the square hole on the SIFs is found. The numerical results reported here also prove that the boundary element method is simple, yet accurate, for calculating the SIFs of complex crack problems in finite plate.  相似文献   

18.
In this article, a piezoelectric hybrid element is presented and optimized by penalty equilibrium approach, and special crack surface element is suggested for exactly implementing the boundary conditions on crack surface. An iteration technique is used to treat one of the electric boundary conditions. Then, a piezoelectric material with crack is numerically studied by the optimized hybrid element method, and the results are compared with the analytical solutions. The stress and the electrical displacement fields with different crack surface conditions are studied, and the influence to those fields arisen by the far field mechanical and electric loading is also studied.  相似文献   

19.
采用复变函数的方法,研究了含椭圆孔的压电材料在无限远处受力电荷载作用的平面问题。与已有文献不同,通过求解10元一次方程,得到了满足可导通和不可导通电边界条件,孔内和压电材料体内电弹场的通解。以PZT一4压电陶瓷为例,给出了孔内的电场、压电材料体内电弹场沿孔边和坐标轴向的分布情况。得出了以下新的结论:含椭圆孔压电材料的电弹场与边界条件、力电荷载的方向、椭圆孔的形状有关,但在水平方向的拉伸载荷和电位移的作用下,椭圆孔的形状对长半轴处的环向电位移和正应力的最大值没有影响。  相似文献   

20.
In this paper, the dual reciprocity boundary element method in the Laplace domain has been developed for the analysis of three-dimensional elastodynamic fracture mechanics mixed-mode problems. The boundary element method is used to calculate the unknowns of transformed boundary displacement and traction and the domain integrals in the elastodynamic equation are transformed into boundary integrals by the use of the dual reciprocity method. The transformed dynamic stress intensity factors are determined by the crack opening displacement (COD) directly in the Laplace domain. By using Durbin's inversion technique, the dynamic stress intensity factors in the time domain are obtained. Several numerical examples are presented to demonstrate the good agreement with existing solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号