首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The electrochemical study of N-tert-butoxy-2,4-diphenyl-6-tert-butylphenylaminyl (1a), N-tert-butoxy-2,4-bis(4-chlorophenyl)-6-tert-butylphenylaminyl (1b), N-[2-(methoxycarbonyl)-2-propyl]-2,4-diphenyl-6-tert-butylphenylaminyl (2), and N-tert-butoxy-2,4,6-tris(4-chlorophenyl)phenylaminyl radicals (3) was performed by cyclic voltammetry using acetonitrile as the solvent and Bu4NPF6 as the supporting electrolyte. On cathodic scan (100 mV/s), all the radicals gave chemically reversible cyclic voltammograms, and the were determined to be −1.405 V (1a), −1.310 V (2a), −1.282 V (2b), and −1.195 V (3) (versus Fc+/Fc), respectively. On anodic scan (100 mV/s), on the other hand, 1a, 1b and 2 showed chemically reversible cyclic voltammograms, but 3 exhibited a partially reversible couple even on a scan rate of 500 mV/s, indicating that the cation species of 3 was less stable. The determined for 1a, 1b, 2 and 3 were 0.220, 0.280, 0.318 and 0.294 V (versus Fc+/Fc), respectively. The electrochemical data were compared with those of thioaminyl radicals, the corresponding sulfur analogues of 1-3.  相似文献   

2.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

3.
A series of novel amphiphilic fluorescent CBABC-type pentablock copolymers (Py-PMMA-PEG4600-PMMA-Py) were prepared from BAB-type amphiphilic triblock copolymer (PMMA-PEG4600-PMMA) as macroinitiator with various contents of 1-(methacryloyloxyethylamino-carboxylmethyl) pyrene (PyMOI) by atom transfer radical polymerization (ATRP) in toluene using CuBr/2,2-bipyridine as catalyst system. Triblock copolymer (PMMA-PEG4600-PMMA) was prepared by ATRP and obtained from Br-PEG4600-Br as macroinitiator with methyl methacrylate in tetrahydrofuran using the same catalyst. The molecular weights of pentablock copolymers which were reinitiated by PMMA-PEG4600-PMMA macroinitiator were calculated from 1H NMR spectra up to 42,400 gmol−1. The polydispersity of pentablock copolymers obtained from GPC analysis was narrow between 1.10 and 1.38. The crystallinity of triblock copolymer (PMMA-PEG4600-PMMA) was decreased slightly with incorporating PMMA segment. Introducing the bulky pyrene substituent into pentablock copolymer, the melting temperature was not observed and all pentablock copolymers showed amorphous patterns in wide-angle X-ray scattering (WAXS) due to decrease in the degree of crystallinity of polymer chain because of disturbing regular packing. The temperatures at 10% weight loss (Td10), examined by TG analysis, showed values ranging from 265 to 323 °C in nitrogen and 264 to 313 °C in air. Fluorescence spectra of Py-PMMA-PEG4600-PMMA-Py exhibited stronger excimer emission at ca. 480 nm due to the aggregations of pyrene group formed via interaction of the hydrophobic chains. The more content of PyMOI segment in pentablock copolymers can obtain the higher emission intensity ca. 480 nm. When there were higher PyMOI contents (84.9 wt% PyMOI) in pentablock copolymers, they formed larger aggregates (210 nm) in SEM micrographs. On the other hand, while increasing the concentration of the polymer solution in THF, the morphology was changed from spherical (0.1 mg/mL) to chainlike (1.0 mg/mL) aggregates.  相似文献   

4.
This work describes the synthesis and characterisation of two types of thiophene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s (PAE-PAV) copolymers, whose repeating units (-Ph-CC-Th-CHCH-Ph-CHCH-)n, 5, and (-Th-CC-Ph-CC-Th-CHCH-Ph-CHCH-)n, 8a-c, consist, respectively, of a 1:2 and a 2:2 ratio of triple bond/double bond moieties. Comparison of their photophysical, electrochemical and photovoltaic properties has been carried out. Although similar electrochemical data (HOMO: −5.43 eV, LUMO: ∼−3.15 eV, ) as well as identical thin film absorption behaviour (λa=500 nm, ) were obtained for both types of materials, significant differences in their thin film photoluminescence behaviour and photovoltaic properties were observed. While polymer 5 shows a fluorescence maximum at λe=568 nm (with a fluorescence quantum yield of Φf=7%), a total fluorescence quenching was observed in 8. Far better photovoltaic performance was obtained from solar cells (set up: ITO/PEDOT:PSS/active layer/LiF/Al; active layer consisting of 5 or 8b as donor and PCBM as acceptor in a 1:3 ratio by weight) designed from 5 than from 8b. Open circuit voltage, VOC, as high as 900 mV and power conversion efficiency, ηAM1.5, around 1.2% were obtained. This can be attributed to the 1:2 triple bond/double bond ratio as well as the grafting of shorter octyloxy and 2-ethylhexyloxy side chains in 5 and to its comparatively higher molecular-weight.  相似文献   

5.
Chih-Cheng Lee 《Polymer》2008,49(19):4211-4217
A series of vinyl copolymers (P1-P6) containing pendant hole-transporting triphenylamine (11-88 mol%) and carbazole chromophores were synthesized by radical copolymerization to investigate the influence of triphenylamine groups upon optoelectronic properties. The copolymers were readily soluble in common organic solvents and their weight-average molecular weights (Mws) were between 1.41 × 104 and 2.24 × 104. They exhibited moderate thermal stability with Td = 402-432 °C at 5% weight loss. The emission spectra (both PL and EL) of the blends [P1-P6 with 4 wt% Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from P1-P6 to Ir(ppy)3. The HOMO levels of P1-P6, estimated from onset oxidation potentials in cyclic voltammeter, were −5.42 to −5.18 eV, which are much higher than −5.8 eV of conventional poly(9-vinylcarbazole) (PVK) host owing to high hole-affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using P1-P6 as hosts and Ir(ppy)3 as dopant (ITO/PEDOT:PSS/P1-P6:Ir(ppy)3 (4 wt%):PBD (40 wt%)/BCP/Ca/Al), were greatly improved relative to that of PVK. The best performance was obtained with P4 device, in which the maximum luminance and luminance efficiency were 11?501 cd/m2 and 10.6 cd/A, respectively.  相似文献   

6.
Dae Sik Hong 《Polymer》2006,47(1):184-192
CO was not a comonomer but an inhibitor in ethylene polymerization catalyzed over [1,2-bis(2,6-diisopropylphenylimino)]acenaphthene nickel(II) dibromide (1)/MAO. The average number of active sites, , and the average rate constant for chain propagation, of the (1)/MAO system was determined using CO inhibition method based on the assumption that two molecules of CO coordinate to each active center. At 0 °C, the average number of active centers, , was increased with the Al/Ni ratio, and , was not influenced by the Al/Ni ratio. Up to Al/Ni ratio of 3000, the average number of active sites was saturated. Single active site was present at the high ratio of Al/Ni and its reactivity with CO is uniform at 0 °C. The maximum average activity was 5262.07 (kg-PE/mol-Ni/atm/hr) and 65.7% of (1) was converted to form active cation complexes at 0 °C and Al/Ni molar ratio of 5000, while 36.5% of (1) was activated at the Al/Ni molar ratio of 250. Above 30 °C, the complicated CO poisoning behavior was observed because the reactivity and stoichiometry of active centers with CO were not uniform and their thermal stability was very poor.  相似文献   

7.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5778-5788
A series of polyimides IIIa-h characterized by colorlessness, high transparency, high solubility, and good mechanical property, was synthesized from the aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride (I), and various aromatic diamines (IIa-h) with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct cast films. The III series showed more colorless than the polyimides (V and VI series) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) contained, the VI series was synthesized from the II with 6FDA. These films III had cut-off wavelengths between 371 and 376 nm, as well as b* value (a yellowness index) ranging from 3.0 to 4.7. In fact, it is so far the most colorless aromatic polyimide in our systematical researches. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 5-10% in the amide polar solvent, ether solvent, and chlorinated solvent. These films showed strength tensile of 97-123 MPa, dielectric constants of 2.78-3.28 (1 MHz), and moisture absorptions of 0.11-0.36 wt%. The glass transition temperature of the III series was recorded at 214-259 °C, the 10% weight loss temperature was over 468 °C, and the residue was more than 47% at 800 °C in nitrogen.  相似文献   

8.
9.
Ali Cirpan 《Polymer》2005,46(3):811-817
Light emitting properties of several polyfluorene (PF) copolymers (P1-P4) and their blends have been investigated. Light emitting diodes were fabricated with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al. The EL peak wavelengths were 421 nm (violet), 505, 513 nm (green) and 570 nm (yellow) for PF copolymers and 510, 535 nm (green) for P1/P2 and P1/P3 blends, respectively. Förster energy transfer in the photoluminescence and electroluminescence of the polymer blends P1/P2 and P1/P3 was studied. The LED using the polymer blend P1/P2 showed a turn-on voltage of 2.5 V and a brightness of 5×104 cd/m2 at 7 V. The highest external quantum efficiency was observed to be 3.71% at 5 V. Upon addition of 20 wt% of the green emitter P2 to the violet emitter P1, the device efficiency increased from 1.18 to 3.71%.  相似文献   

10.
TEMPO-containing 7-oxanorbornene monomers 1-4 (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxy) were synthesized and polymerized via ring-opening metathesis using a ruthenium carbene catalyst. Monomers 1 and 3 gave polymers with number-average weights of 80?100 and 112?200 in 85 and 96% yields, respectively, whereas monomers 2 and 4 did not provide high molecular weight polymers. Poly(1) and poly(3) were soluble in common solvents including CHCl3, CH2Cl2 and THF, while insoluble in hexane, diethyl ether and MeOH. They were thermally stable up to ca. 240 °C according to the TGA measurements in air. The secondary batteries utilizing the present polymers as cathode-active material demonstrated reversible charge/discharge processes, whose discharge capacities were 107 and 92.8 A h/kg, and displayed excellent high-rate charge and discharge properties. These cells demonstrated excellent cycle life, e.g., the discharge capacities of poly(1) and poly(3) showed less than 10% decrements even after 100 cycles.  相似文献   

11.
The synthesis of alternating poly(amide urethane)s 5a-d was performed in three steps using ε-caprolactone, diamines, and diphenyl carbonate as starting materials. The microstructure and nature of the end groups of the poly(amide urethane)s were determined by means of 1H NMR spectroscopy, which reveals an alternating sequence of amide and urethane linkages in a linear chain with hydroxy and phenyl urethane end groups. The molecular weight and polydispersity of the polymers obtained (, ) were determined by means of gel permeation chromatography. The thermal properties determined by means of DSC show that the poly(amide urethane)s 5a-d are semicrystalline materials having one or two endothermic transitions similar to the poly(amide urethane)s 10a-d prepared from ε-caprolactam, amino alcohols, and diphenyl carbonate. Thermogravimetric analysis of poly(amide urethane)s 5a-b shows a single step decomposition, while poly(amide urethane)s 10a-c decompose in two steps indicating that different degradation mechanisms are operating.  相似文献   

12.
Chin-Ping Yang 《Polymer》2006,47(20):7021-7033
Two series of novel polyimides (5a-g and 6a-g) containing flexible ether linkages and pendent trifluoromethyl (CF3) groups were synthesized from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3a) and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3b) with various CF3-substituted aromatic bis(ether amine)s (4a-g) via ring-opening polyaddition to poly(amic acid)s, followed by thermal or chemical imidization. These polyimides were readily soluble in a variety of organic solvents and could be solution-cast into flexible and tough films. The cast films exhibited high optical transparency and almost no color, with a UV-vis absorption edge of 368-382 nm and a very low b value (a yellowness index) of 6.2-15.5. They had good thermal stability with glass-transition temperatures of 186-288 °C, and most of them did not show significant decomposition before 500 °C. Moreover, these polyimide films also possessed low dielectric constants of 2.79-3.49 (at 1 MHz) and low water uptakes (<0.65 wt%).  相似文献   

13.
14.
A new synthetic method for the preparation of poly(benzoxazole) (PBO) precursor, poly(o-hydroxyamide) (7) from bis(o-aminophenol) (5) and diphenyl isophthalate (6) has been developed. Polymer 7 was prepared by the polycondensation of 5 and 6 in 1-methyl-2-pyrrolidinone (NMP) at 185-205 °C. Model reactions were carried out in detail to elucidate appropriate conditions for the formation of 2-hydroxybenzanilide (3) from o-aminophenol (1) and phenyl benzoate (2). The photosensitive (PBO) precursor based on polymer 7 containing a 22% of benzoxazole unit and 30 wt% 1-{1,1-bis[4-(2-diazo-1-(2H)naphthalenone-5-sulfonyloxy)phenyl]ethyl}-4-{1-[4-(2-diazo-1(2H)naphthalenone-5-sulfonyloxy)phenyl]methylethyl}benzene (S-DNQ) showed a sensitivity of 110 mJ cm−2 and a contrast of 5.0 when it was exposed to 436 nm light followed by developing with a 2.38 wt% aqueous tetramethylammonium hydroxide solution at room temperature. A fine positive image featuring 8 μm line and space patterns was observed on the film of the photoresist exposed to 200 mJ cm−2 of UV-light at 436 nm by the contact mode.  相似文献   

15.
Rupei Tang  Caixia Cheng  Fu Xi 《Polymer》2005,46(14):5341-5350
Two dendronized poly(p-phenylene vinylene) (PPV) derivatives, ED-PPV and BB-PPV, have been successfully synthesized according to the Gilch route. The obtained polymers possess excellent solubility in common solvents, good thermal stability with 5% weight loss temperature of more than 340 °C. The weight-average molecular weight (Mw) and polydispersity index (PDI) of ED-PPV and BB-PPV are in the range of (1.26-2.34)×105 and 1.37-1.45, respectively. Polymer light-emitting diodes (PLEDs) with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al devices were fabricated, and the PLEDs emitted green-yellow light. The turn-on voltages of the PLEDs based on ED-PPV and BB-PPV were approximately 4.3, and 4.5 V, respectively. The PLED devices of ED-PPV exhibited the maximum luminance of about 157 cd/m2 at 10.5 V. Photovoltaic cells with the configuration of ITO/PEDOT:PSS/polymer:C60 (1:1)/Al were also fabricated, and the energy conversion efficiency of the devices based on ED-PPV and BB-PPV was measured to be 0.58, and 0.014%, respectively, under the white light at 75 mW/cm2.  相似文献   

16.
Akito Fukui 《Polymer》2009,50(17):4159-5967
Diarylacetylenes having fluorenyl groups and other substituents (trimethylsilyl, t-butyl, bromine, fluorine) (1a-1) were polymerized with TaCl5-n-Bu4Sn. Monomers 1a-l produced high molecular weight polymers 2a-l (Mw 5.1 × 105-1.3 × 106) in 12-59% yields. All of the polymers were soluble in common organic solvents, and gave tough free-standing membranes by the solution casting method. The onset temperatures of weight loss of polymers 2a-l in air were over 400 °C, indicating considerably high thermal stability. All the polymer membranes showed high gas permeability; e.g., the oxygen permeability coefficient (PO2) of 2a was as large as 4800 barrers. Membrane 2d possessing two fluorine atoms at meta and para positions of the phenyl ring showed the highest oxygen permeability (PO2 = 6600 barrers) among the present polymers.  相似文献   

17.
1,9-Decadiene/propylene copolymers were obtained with isolated metallocenes and with a binary metallocene catalyst system activated by methylaluminoxane. The metallocenes under investigation were syndiospecific diphenylmethyl(cyclopentadienyl)(9-fluorenyl)zirconium dichloride (1) and isospecific rac-dimethylsilylbis(4-tert-butyl-2-methyl-cyclopentadienyl)zirconium dichloride (2). A copolymer structure, in which 1,9-decadiene linked isotactic and syndiotactic polymer chains, was obtained when copolymerisation was started with catalyst 2 at 80 °C followed by injection of catalyst 1 and instantaneous lowering of polymerisation temperature to 40 °C after 15 min of polymerisation. The copolymer was also shown to work as a compatibiliser in a blend of syndiotactic and isotactic polypropylene. We propose that catalyst 2 incorporates 1,9-decadiene into the isotactic main chain without any significant crosslinking within the first 15 min of polymerisation at 80 °C and the produced isotactic macromonomers are further incorporated at 40 °C into the syndiotactic main chain in polymerisation with catalyst 1.  相似文献   

18.
Propylene was polymerised with novel combination metallocene catalyst systems prepared by an emulsion-based heterogenisation method in liquid monomer conditions. The catalyst combinations investigated were rac-dimethylsilanylbis(2-methyl-4-phenyl-1-indenyl)zirconium dichloride/rac-[ethylenebis(2-(tert-butyldimethylsiloxy)indenyl)]zirconium dichloride/methylaluminoxane (MAO) (1 + 2) and rac-dimethylsilanylbis(2-methyl-4-phenyl-1-indenyl)zirconium dichloride/rac-dimethylsilanylbis(2-isopropyl-4-[3,5-dimethylphenyl]indenyl)zirconium dichloride/MAO (1 + 3). The effects of polymerisation temperature and hydrogen on catalyst performance and polymer properties, as well as copolymerisation with hexene and ethylene were investigated. Depending on the polymerisation conditions, Mw of polypropylene varied from 144 to 286 kg/mol for 1 + 2 and from 200 to 390 kg/mol for 1 + 3. Combination 1 + 2 produced broader molecular weight distribution (MWD) than 1 + 3, and a bimodal MWD with clearly separated low- and high-Mw polymer fractions was observed with 1 + 2. The two catalyst systems showed similar hydrogen and hexene responses. Each metallocene precursor showed individual response towards the polymerisation conditions, especially polymerisation temperature, suggesting that interaction between the catalyst active sites was negligible in the studied systems.  相似文献   

19.
Jens Kiesewetter 《Polymer》2006,47(10):3302-3314
Four cationic palladium(II) α-diimine complexes, [{ArNC(R)-C(R)NAr}Pd(Me)(CH3CN)] (1, R=H, Ar=2,6-Me2C6H3, =B[3,5-C6H3(CF3)2]4; 2, R=CH3, Ar=2,6-iPr2C6H3; 3, R=CH3, Ar=2-tBuC6H4; 4, R,R=An, Ar=2,6-iPr2C6H3) were used for the copolymerization of ethene with norbornene. The copolymerization behavior of the catalysts and the influence of the polymerization temperature were investigated. The copolymers were characterized using 13C NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography techniques. Sterically demanding ortho -N-aryl substituents and rigid bulky bridge units increase the copolymer molar masses, while the incorporation level of norbornene is decreased. Microstructures with isolated norbornene units and alternating sequences are predominant. Less bulky substituted catalysts yield copolymers with higher norbornene contents and lower molar masses. Norbornene diblock sequences are dominant which are exclusively racemic connected, indicating that the insertion proceeds under chain end control. Optimal polymerization results are achieved at temperatures between 10 and 30 °C, while temperatures below 0 °C result in lower polymerization rates and molar masses. Above 30 °C, activities, molar masses, and norbornene incorporation decreases due to catalyst decomposition.  相似文献   

20.
New copoly(aryl ether)s containing alternate stilbene (P1), distyrylbenzene (P2), or distyrylstilbene (P3) chromophores and aromatic 1,3,4-oxadiazole were prepared by nucleophilic polycondensation. The copolyethers are basically amorphous materials with decomposition temperature greater than 250 °C. Introduction of side hexyloxy groups to distyrylbenzene chromophores in P2 significantly enhanced its solubility in common organic solvents such as toluene, THF, and chloroform. UV/visible and fluorescence spectrometers were employed to investigate their optical properties both in solution and in film state, whereas cyclic voltammograms were used to estimate their band diagrams. Photoluminescence maxima of P1, P2 and P3 are 442, 540 and 528 nm, respectively. Oxadiazole chromophores in backbone enhance electron affinity, whereas pendant hexyloxy groups decrease ionization potential. The threshold voltage and luminance of ITO/P2 (100 nm)/Al single layer device are 17 V and 950 cd/m2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号