首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Deepak S. Langhe 《Polymer》2011,52(25):5879-5889
Layer multiplying coextrusion technique was used to fabricate films with hundreds of alternating layers of a crystallizable polymer, syndiotactic polypropylene (sPP), and an amorphous polymer, polycarbonate (PC). Atomic force microscopy and wide-angle X-ray scattering revealed the absence of any oriented crystal morphology of sPP in the extruded layered films. An approach of isothermal melt recrystallization of sPP nanolayers revealed the formation of oriented lamellae under the rigid confinement of hard glassy PC layers. X-ray scattering data showed that sPP crystallized as stacks of single crystal lamellae oriented parallel to the layers at high crystallization temperatures. As the crystallization temperature decreased, on-edge lamellar orientation was preferred. Formation of in-plane lamellae was attributed to heterogeneous bulk nucleation, while nucleation of on-edge lamellae was initiated at substrate interface. It was observed that as the layers thickness reduced, the orientations of both in-plane and on-edge lamellae became sharper.Detailed analysis of crystal orientations in 30 and 120 nm sPP layers was carried out. Melt recrystallization of 30 nm layers revealed formation of in-plane lamellae above 90 °C and mainly on-edge lamellae below 70 °C. At intermediate temperatures, formation of mixed crystals was reported. In 120 nm layers, crystallization temperature of 100 °C was required to form in-plane crystals, while on-edge lamellae were formed below 90 °C.We also investigated crystallization onset for on-edge and in-plane lamellar nucleation. Although, the two crystal fractions were significantly affected as a function of crystallization temperature, it was noticeable that both crystal habits were initiated at the same time. The results suggested that the relative growth rates of in-plane and on-edge crystal orientations was responsible for different fractions of the two crystal orientations at a given crystallization temperature.Oxygen transport properties of melt recrystallized sPP layers were measured. When the melt recrystallization temperature increased from 85 to 105 °C in 120 nm sPP layers, at least one order of magnitude enhancement in the barrier properties was observed. It was evident from the X-ray data that the amount of in-plane crystal fraction increased with increasing crystallization temperature. In-plane crystals acted as impermeable platelets to oxygen flux resulting in improved gas barrier properties. A similar effect was observed in 30 nm sPP layers over a temperature range of 60-105 °C. A correlation between in-plane crystal fraction and the oxygen permeability was obtained from X-ray and oxygen transport data analysis. It was shown that the permeability decreased exponentially with increasing in-plane crystal fraction.  相似文献   

2.
The effect of the addition of 50 nm spherical alumina nanoparticles with hydrophilic or hydrophobic surfaces on the morphology of syndiotactic polypropylene (sPP) was investigated. The filler content in the nanocomposites was 3 wt%. Polarized Optical Microscopy and Small Angle Light Scattering (SALS) studies showed that sPP and the nanocomposites form hedrites. The addition of alumina nanoparticles significantly increased the number of hedrites. A higher number of nucleation sites in the nanocomposites promote a higher crystallization rate, and thus hedritic growth was stopped at the early stage of crystallization. Quantitative evaluations by SALS analysis show that the object size is decreased by not only the crystallization conditions but also the presence of Al2O3 nanoparticles. A small amount of Al2O3 nanoparticles did not noticeably affect the crystallinity of sPP, but increased the melting point. Transmission Electron Microscopy images showed that the lamellar thickness did not change significantly with the incorporation of nanoparticles. The lamella thickness, however, depends on cooling rates. X-ray diffraction characterization indicated that the sPP and the nanocomposites were crystallized in disordered “form I”. The incorporation of alumina nanoparticles had a small effect on the crystal structure of syndiotactic polypropylene.  相似文献   

3.
Gautam Parthasarathy 《Polymer》2005,46(17):6335-6346
The effect of temperature on the elasticity and structure of syndiotactic polypropylene (sPP) is investigated using a combination of WAXD and rheo-optical FTIR spectroscopy. sPP has a rich crystal structure, which leads to unique mechanical behavior. Beyond yield point, it exhibits elastic response associated with deformation-induced structure-structure transformation. The structure and orientation were measured both during and after uniaxial tensile stretching of films (up to 200%) as a function of temperature (25-70 °C). Our WAXD and rheo-FTIR results suggest that as the temperature increases, there is a reduction in the extent of helical to trans-planar conformational change upon stretching. When the strain is released, there is partial transformation of trans-planar conformation back to helical. The presence and orientation of the trans-planar conformation plays a key role on the elastic behavior of sPP beyond the yield point. Rheo-optical FTIR dichroism studies provide further insights into the elasticity in syndiotactic polypropylene. Different proportions of helical and trans-planar conformations orient to different extents. The helical conformation does not orient appreciably at higher temperature though they are present beyond the yield point. In contrast, the trans-planar chains show a significant increase in dichroism beyond the yield point, suggesting that there is a difference in mobility (orientation) of the helical and trans-planar chains. This further supports the importance of trans-planar chains on the elastic behavior.  相似文献   

4.
Syndiotactic polypropylene (sPP) nanocomposites were obtained by melt blending synthetic fluorohectorite modified octadecyl ammmonium ions (OLS), and maleic-anhydride-grafted isotactic polypropylene (iPP-g-MA) as compatibilizer. The composition of the inorganic material was varied between 5 and 20 w/w%. Films of the composites were obtained by hot press molding the pellets. Melt-direct polymer intercalation of sPP into the OLS gave rise to nanocomposites in which the silicate layers were delaminated at low clay contents, and ordered to intercalated structures at the highest clay content. The elastic modulus was higher than for the pure polymer in a wide temperature range and increased with the inorganic content. The transport properties were measured for dichloromethane and n-pentane. The sorption was reduced compared to pure sPP. There were not significative differences between the samples having different inorganic contents. The diffusion coefficient decreased with increasing clay content. Permeability (P) showed a strong decreasing dependence on the clay content. The improvement of the barrier properties was largely caused by the reduced diffusion.  相似文献   

5.
《Ceramics International》2019,45(15):18430-18438
A novel diamond@carbon core/shell structure, constituting diamond as a hard core and carbon as a soft shell, was synthesized from resole resin and nanodiamond as the starting materials via in-situ polymerization and subsequently high-temperature carbonization. The diamond@carbon nanocomposite was characterized using field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that the shell material are comprised of amorphous carbon. The thickness of carbon shell was controlled from 502.5 nm to 27 nm by adjusting the concentration of the nanodiamond. As confirmed by TEM, FT-IR and XPS, the diamond@carbon nanocomposite revealed a stable structure, due to the formation of the chemical bonding between diamond and carbon shell after calcination process. Overall, the diamond@carbon nanocomposite abrasives could lead to a reducted surface roughness and damage of SiC wafer comparing with the nanodiamond abrasives, due to the spring-like effect coming from the elastic component of the amorphous carbon shell. Moreover, the as-prepared nanoparticles exhibited better dispersion stability than the pure diamond in the pH range from 8 to 11.  相似文献   

6.
Polystyrene/polythiophene (PSt/PTh) core/shell nanoparticles were successfully synthesized via a one-pot Fe3+-catalyzed oxidative and soap-free emulsion polymerization process. A small amount of sodium styrene sulfonate (NaSS) was used to maintain the colloidal stability of the PSt/PTh nanoparticles. Hydrogen peroxide (H2O2) and a trace of iron chloride (FeCl3) were used to carry out the free-radical polymerization of styrene and the oxidative polymerization of thiophene. The dual initiation characteristics of H2O2/FeCl3 in the PSt/PTh core/shell nanoparticle formation were investigated by observing the time-evolution of the particle morphology. In addition, photoluminescent property, particle size distribution, core/shell morphology and the formation mechanism of the PSt/PTh nanoparticles were studied by spectrofluorophotometery, dynamic light scattering (DLS), in-situ IR, zeta-potential, and time-evolution field-emission scanning electron microscope (FE-SEM) analyses.  相似文献   

7.
Yong Chen 《Polymer》2006,47(5):1667-1673
Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions on a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PP convex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process. With solvent evaporation, s-1,2-PB would crystallize first forming the continuous phase, while the segregated i-PP phase accumulated on s-1,2-PB and crystallized subsequently, forming dispersed i-PP regions.  相似文献   

8.
Regular structures in polymer melt play important roles during crystallization and subsequently influence performances of polymer materials. In the present work, differential scanning calorimetry (DSC) and variable temperature Fourier transform infrared spectroscopy (VT-FTIR) were used to characterize the variations of regular structures in melt of syndiotactic polypropylene (sPP) during heating. It was found that during heating, the structural transition in sPP melt undergoes four stages: (1) destruction of long regular structures; (2) formation of short regular structures; (3) transition from short regular structures to isotropic state; and (4) isotropic state. These regular structures in sPP melt have distinct memory effects on the crystallization behaviors. By using Flory's RIS model, it was found that in final isotropic state, the most common conformers are ttgg and tttt, corresponding to helical and planar-zigzag conformations, respectively. These findings are helpful to deeply understand the essence of structures in sPP melt and microstructure variations during melting.  相似文献   

9.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites have been prepared by melt intercalation using organomontmorillonite and conventional twin screw extrusion. The dispersibility of silicate layers of the montmorillonite in the composites was investigated by using X‐ray diffractometer and transmission electron microscopy (TEM). The silicate layers of montmorillonite are dispersed at the nanometer level in the PP matrix, as revealed by X‐ray and TEM results. The tensile strength of PP/MMT is not much improved compared with pure PP or conventional filled composites. However, the impact strength is greatly improved at lower content of MMT. © 2000 Society of Chemical Industry  相似文献   

10.
A mixture of two epoxy resins, tetraglycidyl 4,4′‐diaminodiphenyl methane and bisphenol‐A diglycidylether, cured with 4,4′‐diaminodiphenyl sulfone, was used as matrix material for high‐performance epoxy hybrid nanocomposites containing organophilicly modified synthetic fluorohectorite and compatibilized liquid six‐arm star poly(propylene oxide‐block‐ethylene oxide) (abbreviated as PPO). The hydroxy end groups of the poly(propylene oxide‐block‐ethylene oxide) were modified, yielding a six‐arm star PPO with an average of two pendant stearate chains, two phenol groups, and two hydroxy end groups. The alkyl chains of the stearate end groups played an important role in tailoring the polarity of the polymer. Its phenol end groups ensured covalent bonding between liquid polymer and epoxy resin. Two different organophilic fluorohectorites were used in combination with the functionalized PPO. The morphology of the materials was examined by transmission electron microscopy. The hybrid nanocomposites were composed of intercalated clay particles as well as separated PPO spheres in the epoxy matrix. As determined by dynamic mechanical analysis, the prepared composites possessed glass‐transition temperatures around 220°C. Although the tensile moduli remain unaltered, the tensile strengths of the hybrid materials were significantly improved. The relatively high fracture toughness of the neat resin, though, was not preserved for the hybrid resins. Scanning electron microscopy of the fracture surfaces revealed extensive matrix shear yielding for the neat resin, whereas the predominant fracture mode of the hybrid nanocomposites was crack bifurcation and branching. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3088–3096, 2004  相似文献   

11.
Organo‐montmorillonite/nitrile rubber (NBR) nanocomposites were prepared by a melt intercalation process. The characteristics of NBR nanocomposites were determined by an oscillating disk rheometer and transmission electron microscopy. The cure characteristics were investigated according to the change in clay content and clay types. This study confirmed that organo‐montmorillonite/NBR nanocomposites have various cure characteristics, namely minimum torque, maximum torque, scorch time and curing time, according to the change in clay content and clay types. In particular, as the chain length of the modifier used for the treatment of Na+‐MMT following vulcanization increases, scorch time and optimum curing time are reduced. This is because, as the chain length of the modifier increases, organo‐MMT is distributed more equally during the formation of the nanocomposites. As swelling increases, the chain length of the clay modifier expands and then constitutes a better barrier. Copyright © 2003 Society of Chemical Industry  相似文献   

12.
The crystallization from the melt of the trans-planar mesomorphic form of syndiotactic polypropylene is investigated at different quenching temperatures. The formation of the trans-planar mesomorphic form at −5, 0 and 6 °C is followed as a function of the residence time at these temperatures by X-ray diffraction and FTIR spectroscopy. The quenching temperature influences the rate of formation of the mesomorphic form as well as the maximum amount of the obtained mesomorphic form. By increasing the quenching temperature, in the examined range between −5 and +6 °C, an increase in the rate of formation of the mesomorphic form is observed. The maximum amounts of mesomorphic form obtained at 6 and −5 °C are lower than the amount achieved at 0 °C, which corresponds to nearly 100% of the total crystalline phase.  相似文献   

13.
Acrylonitrile (AN)-methacrylonitrile (MAN) copolymer particles with a core/shell structure were prepared by suspension polymerization. The particles were about 10-20 μm in diameter and had a hollow core containing an inert hydrocarbon. The influence of the monomer feed ratio and the polymerization temperature on the particle morphology was studied. One purpose of this study was to determine the boundaries for achieving a core/shell structure with the polymer encapsulating the hydrocarbon. When polymerizing at 62 °C, it was found that an initial AN/MAN feed ratio (fAN) between 0.15 and 0.9 results in core/shell particles with encapsulated hydrocarbon. fAN lower than 0.15 yielded solid particles with no hydrocarbon encapsulated while fAN higher than 0.9 yielded particles built up entirely from agglomerates of smaller primary particles. In contrast, when polymerizing at 80 °C, a much narrower span of fAN (0.5-0.85) yielded particles with hydrocarbon encapsulated. The influence on monomer conversion and the molecular weight of the polymer was also studied.  相似文献   

14.
Nonisothermal melt crystallization kinetics of syndiotactic polypropylene (sPP)/alumina nanocomposites were investigated via differential scanning calorimetry. The addition of alumina nanoparticles significantly increases the number of nuclei and promotes the crystallization rate of sPP. Nonisothermal melt crystallization kinetics was analyzed by fitting the experimental data to a Nakamura model using Matlab. The average values of Avrami exponent n are 1.7 for both sPP and sPP/Al2O3 nanocomposites during slow cooling, which implies a two‐dimensional growth is the predominant mechanism of crystallization following a heterogeneous nucleation. The two nanocomposites give n values equal to 2.3 during faster cooling, indicating that the main growth type taking place for sPP/alumina nanocomposites is also the two‐dimensional growth. The subsequent melting behavior shows that the presence of alumina nanoparticles changed both the cold crystallization and the recrystallization of sPP. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The synthesis of hard-core/soft-shell and soft-core/hard-shell polymers by a two-stage semi-continuous microemulsion polymerization process is reported here. In the first stage, high-solid polymer seeds (>30 wt%) of slightly crosslinked polystyrene or poly(butyl acrylate) were obtained; then, the other monomer was added semi-continuously to form the shell. The effects on the mechanical properties (Young's modulus, ultimate properties, hardness and impact energy) of the ratio of rigid-to-soft and soft-to-rigid polymers were studied. It was found that the material becomes stiffer and presents a lower elongation at break as the amount of the rigid polymer increases. The mechanical properties also depend on the location of the hard and soft polymers. Experimental mechanical properties were compared with the predictions of the Kerner and the equivalent box models. Comparison with the predictions of the Kerner model suggests that phase inversion occurred in the case of hard-core/soft-shell materials. Phase inversion was corroborated by transmission electron microscopy. The thermodynamically preferred morphology, according to theory, is that of soft-core/hard-shell, regardless of the order of addition of monomers. Experimental data follow closely the predictions of the equivalent box model only for soft-core/hard-shell polymers.  相似文献   

16.
Weiming Ma  Jian Yu  Dujin Wang 《Polymer》2007,48(6):1741-1748
The form II of syndiotactic polypropylene (sPP) has been found more thermodynamically stable than form I when melt crystallized at pressures above 150 MPa, while the reverse occurs below 150 MPa. In the present study, through the cold and melt crystallization in supercritical CO2 the stability of various polymorphic forms of sPP, especially form II, was confirmed by using Fourier-transform infrared spectroscopy and wide-angle X-ray diffraction. Compared with the formation of pure form I at high temperatures under ambient condition, a mixture of forms I and II was formed by both the cold and melt crystallization in supercritical CO2. This atmosphere changed the relative stability of forms I and II, and made the form II more thermodynamically stable than form I. The increased solubility parameters of the surroundings, at which the form II was formed, also confirmed the stability of form II over form I in supercritical CO2. The incubation pressure was the key factor affecting the formation and amount of form II. Supercritical CO2 provides a combining severe condition to obtain the form II crystal, although its pressure was much lower than the elevated pressures (>150 MPa) reported before.  相似文献   

17.
A low gel content poly (styrene-ran-butadiene)/poly (methyl methacrylate) (SBR/PMMA) core/shell particles dispersed in a good solvent for the shell was wet spun into a coagulation bath at room temperature. The SEM micrographs of as spun fibers showed various surface topographies and fiber diameters, ranging from 4.2 up to 20 μm depend upon the draw ratio. The osmium tetroxide stained cross-section of fibers observed by transmission electron microscope (TEM), indicated a heterogeneous morphology consisting of dark cores and fairly light shells, which is a result of self-stratification to an overall core/shell morphology in fiber cross-section. The inner core consisted of higher concentration of copolymers with double bonds, while the outer shell is made mainly of ungrafted PMMA chains. The equilibrium thermodynamic analysis based on minimization of surface free energy predicts a predominant core/shell structure which the SBR chains are encapsulated mainly by ungrafted PMMA homopolymers and SBR-g-PMMA copolymers which agrees quite well with the observed morphology.  相似文献   

18.
Tsutomu Ishioka  Noriko Masaoka 《Polymer》2002,43(17):4639-4644
Syndiotactic polypropylene of all-trans form is transformed to (T2G2T6G2) form (new form) on exposing to xylene vapor under tension. This new form was characterized by infrared spectra and normal mode analysis. By increasing the gauche component from the all-trans to the new form, the infrared intensities of some bands increase. The potential energy distributions (PED) and L vectors for six monomers, which compose the repeating unit, were investigated. As a result, the PED and L vectors of the conformation-sensitive bands were found to be localized at the gauche position.  相似文献   

19.
Syndiotactic polypropylenes (sPPs) with several microstructures (i.e., syndiotacticities and molecular weights) and synthesized by means of two metallocenic catalysts were melt‐blended with 1 and 3 wt % organophilic layered silicates in the presence of a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis showed that the clay was well dispersed in the composites, although the filler morphology depended on the polymer microstructure. Polypropylenes with low syndiotacticities and molecular weights presented the best clay dispersion. Nonisothermal differential scanning calorimetry analysis showed that the polymer microstructure and the clay content modified the thermal behavior of the composites. The compatibilizer and the clay acted as nucleant agents to increase the crystallization temperature of the matrix. Moreover, the double endothermic peak observed during heating scan and associated with the melt/recrystallization/remelt processes of the pure polymer matrix was reduced in the composites. With regard to the mechanical properties under tensile conditions, a synergic effect of the compatibilizer and the clay was observed. In particular, the addition of the compatibilizer alone was able to increase by about 20% the elastic modulus relative to the neat samples, whereas increases between 35 and 50% were measured when the clay was also added, depending on the polymer microstructure. Our results show that the microstructure of sPPs had strong effects on the behavior of its composites with clay in the presence of a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Elena Rojo 《Polymer》2006,47(23):7853-7858
Pressure-Volume-Temperature (PVT) data of an isotactic and a syndiotactic PP are fitted to a modification of the Simha-Somcynsky equation of state (S-S), to calculate characteristic parameters, such as V, T, P and the solubility parameter δ. The hole fraction of the S-S model and the free volume are deduced from these parameters. The application of a modified Doolittle equation and a modified Berry-Fox equation to estimate viscosity, leads to extract novel conclusions on the differences between both types of PPs. An equation which accounts for the effect of temperature on the characteristic ratio of syndiotactic PP is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号