首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction between poly(acrylamide) (PAM) and poly(ethylene glycol) (PEG) in their solid mixture was studied by Fourier transform infrared spectroscopy (FTIR); and their interaction in aqueous solution was investigated by nuclear magnetic resonance spectroscopy (NMR). For the solid PAM/PEG mixtures, an induced shift of the >C?O and >N? H in amide group was found by FTIR. These results could demonstrate the formation of intermolecular hydrogen bonding between the amide group of PAM and the ether group of PEG. In the aqueous PAM/PEG solution system, the PAM and PEG associating with each other in water, i.e., the amide group of PAM interacting with the ether group of PEG through hydrogen bonding was also found by 1H NMR. Furthermore, the effects of different molecular weight of PAM on the strength of hydrogen bonding between PAM and PEG in water were investigated systemically. It was found that the hydrogen bonding interaction between PAM and PEG in water did not increase with the enlargement of the PAM molecular weight as expected. This finding together with the viscosity reduction of aqueous PAM/PEG solution with the PAM molecular weight increasing strongly indicated that PAM molecular chain, especially having high molecular weights preferred to form spherical clews in aqueous PEG solution. Therefore, fewer amide groups in PAM could interact with the ether groups in PEG. Based on these results, a mechanism sketch of the interaction between PAM and PEG in relatively concentrated aqueous solution was proposed. The fact that the phase separation of aqueous PAM/PEG solution occurs while raising the temperature indicates that this kind of hydrogen bonding between PAM and PEG in water is weak and could be broken by controlling the temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
3.
Xiaolin Li  Jiacong Shen 《Polymer》2006,47(6):1987-1994
A novel hydroxyl-capped comb-like poly[poly(ethylene glycol) methacrylate] (PPEGMA) was prepared via atom transfer radical polymerization (ATRP) of α-methylacryloyl-ω-hydroxyl-poly(ethylene glycol) at ambient temperature. The polymerization kinetics of the block copolymer was studied by gel permeation chromatography (GPC) and 1H NMR. It is of interest to find the well-defined comb-like PEG can associate into micelles, which have hydrophilic PEG shell end-capped by hydroxyl groups. The hydroxyl in the shell were further cross-linked by divinyl sulfone (DVS), which could couple with two capped-end hydroxyl groups. The XPS, TEM, AFM and laser scattering particle size distribution analyzer results revealed that reactive micelles could be cross-linked by DVS. The reactive, cross-linkable micelles with PEG shell may have great potential as new drug carrier and nanoreactor, etc.  相似文献   

4.
5.
The effect of cooling rate on crystallization and subsequent aging of high stereoregular poly(lactide) (PLA) blended with poly(ethylene glycol) (PEG) was studied by thermal analysis and by direct observation of the solid state structure with atomic force microscopy (AFM). Blending with PEG accelerated crystallization of PLA. When a PLA/PEG 70/30 (wt/wt) blend was slowly cooled from the melt, PLA crystallized first as large spherulites followed by crystallization of PEG. The extent of PLA crystallization depended on the cooling rate, however, for a given blend composition the PEG crystallinity was proportional to PLA crystallinity. The partially crystallized blend obtained with a cooling rate of 30 °C min−1 consisted of large spherulites dispersed in a homogeneous matrix. The blend was not stable at ambient temperature. With time, epitaxial crystallization of PEG on the edges of the spherulites depleted the surrounding region of PEG, which created a vitrified region surrounding the spherulites. Further from the spherulites, the homogeneous amorphous phase underwent phase separation with formation of a more rigid PLA-rich phase and a less-rigid PEG-rich phase. Decreasing the amount of PEG in the blend decreased the crystallization rate of PLA and increased the nucleation density. The amount of PLA crystallinity did not depend on blend composition, however, PEG crystallinity decreased to the extent that PEG did not crystallize in a PLA/PEG 90/10 (wt/wt) blend.  相似文献   

6.
The aim of this investigation was to develop coating materials based on poly(ethylene glycol) (PEG) covalently grafted onto silazane polymers for marine antifouling applications. The optimum conditions for grafting PEG were defined to have a high selectivity toward olefin hydrosilylation. Thick crack-free films were obtained by curing at room temperature of the PEG grafted silazane precursors. The solidification process has been investigated by FTIR spectroscopy, 29Si NMR in the solid state, thermogravimetric analysis (TGA) as well as elemental analysis. The main reactions that occur during curing are hydrolysis-condensation reactions of alkoxysilane, SiH and SiN functionalities. The PEG-graft-PSZ coatings exhibit excellent repellency against gram-negative Neisseria sp. and gram-positive Clostridium sp. in comparison with the pristine polysilazane surface. The anti-adhesion performance of the coatings depends on the grafting density and the chain length of PEG. The shortest PEG(350 g/mol)-graft-PSZ with the highest graft density was found to have the best anti-adhesion performance. As the density of grafted PEG(750 g/mol) and PEG(2000 g/mol) chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEG is controlled by the length of the PEG chain. The PEG(2000 g/mol)-graft-PSZ coatings are more efficient than the PEG(750 g/mol)-graft-PSZ coatings for the bacterial anti-adhesion.  相似文献   

7.
One route to melt processing of high glass transition temperature polyelectrolytes, such as disulfonated poly(arylene ether sulfone) (BPS), involves mixing a plasticizer with the polymer. In this study, poly(ethylene glycol) (PEG) was used as a plasticizer for BPS. BPS and PEG are miscible, and the effect of PEG molecular weight (in the range of 200–600 g/mol) and concentration on the Tg of BPS/PEG blends was investigated. As PEG molecular weight decreases and concentration increases, the blend Tg is depressed significantly. Based on isothermal holds in a rheometer at various temperatures and times, the PEG materials considered were thermally stable up to 220 °C for 10 min in air or 250 °C for at least 10 min under a nitrogen atmosphere, which is long enough to permit melt extrusion of such materials.  相似文献   

8.
Lingling Ge 《Polymer》2007,48(9):2681-2691
The microstructure of Triton X-100 (TX-100)/poly (ethylene glycol) (PEG) complex has been investigated by fluorescence resonance energy transfer (FRET), dynamic light scatter (DLS), freeze-fractured transmission electron microscopy (FF-TEM) and 1H NMR technology. The nonionic surfactant TX-100 and pyrene are employed as energy donor and acceptor respectively, and the average distance between them is calculated quantitatively in the systems of TX-100/PEG with different molecular weights (MW). The results of FRET study indicate that the presence of PEG leads to the separation of donor and acceptor in TX-100 micelle, suggesting that PEG chains insert into TX-100 micelles making the microstructure of PEG-bound TX-100 aggregates looser than that of free micelles, which is independent of the MW of PEG. However, FF-TEM, DLS and 1H NMR studies show that the morphology of TX-100/PEG complex depends on the MW of the polymer: PEG with shorter chain (MW < 2000 Da) insert into and wrap around TX-100 micelles and form sphere-like complex, while that with longer chain (MW > 2000 Da) would interact with numbers of TX-100 micelles and form coral-shaped clusters. In addition, the effects of temperature and alcohol on the microstructure of TX-100/PEG complex are studied.  相似文献   

9.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

10.
Disulfonated poly(arylene ether sulfone) (BPS) random copolymers, prepared from a sulfonated monomer, have been considered for use as membrane materials for various applications in water purification and power generation. These membranes can be melt-processed to avoid the use of hazardous solvent-based processes with the aid of a plasticizer, a low molecular weight poly(ethylene glycol) (PEG). PEG was used to modify the glass transition temperature and melt rheology of BPS to enable coextrusion with polypropylene (PP). Our previous paper discussed the miscibility of BPS with PEG and the influence of PEG on the glass transition of BPS. In this study, the rheological properties of disulfonated poly(arylene ether sulfone)s plasticized with poly(ethylene glycol) (PEG) are investigated to identify coextrusion processing conditions with candidate PPs. The effects of various factors including PEG molecular weight, PEG concentration, temperature and BPS molecular weight on blend viscosity were studied. The rheological data effectively lie on the same master curve developed by Bueche and Harding for non-associating polymers such as poly(methyl methacrylate) (PMMA) and polystyrene (PS). Although sulfonated polysulfone contains ionic groups, the form of its viscosity versus shear rate (or frequency) behavior appears to be dominated by the relaxation of polymer entanglements.  相似文献   

11.
杨钊  郝建原 《化工进展》2012,31(10):2265-2269
采用3种新式引发剂,即2-(苄氧基)乙醇钾、2-(四氢-2H-吡喃-2-氧基)乙醇钾、单丙烯基乙二醇钾引发环氧乙烷阴离子开环聚合,反应条件为25 ℃、48 h、醇与萘钾摩尔比例1∶1,得到3种异端基遥爪聚乙二醇。以2-(苄氧基)乙醇钾引发聚合所得产物为起始物,经一系列反应,得到两种两端均为活性基团的异端基遥爪聚乙二醇,这种方法具有普适性。通过1HNMR及GPC手段,表征了产物的结构、分子量及分子量分布。结果表明可以得到高产率、分子量可控且分布窄的异端基遥爪聚乙二醇。  相似文献   

12.
The molecular relaxation characteristics of rubbery amorphous crosslinked networks based on poly(ethylene glycol) diacrylate [PEGDA] and poly(propylene glycol) diacrylate [PPGDA] have been investigated using broadband dielectric spectroscopy. Dielectric spectra measured across the sub-glass transition region indicate the emergence of an intermediate “fast” relaxation in the highly crosslinked networks that appears to correspond to a subset of segmental motions that are more local and less cooperative as compared to those associated with the glass transition. This process, which is similar to a distinct sub-Tg relaxation detected in poly(ethylene oxide) [PEO], may be a general feature in systems with a sufficient level of chemical or physical constraint, as it is observed in the crosslinked networks, crystalline PEO, and PEO-based nanocomposites.  相似文献   

13.
Blending poly(ethylene glycol) (PEG) with poly(lactide) (PLA) decreases the Tg and improves the mechanical properties. The blends have lower modulus and increased fracture strain compared to PLA. However, the blends become increasingly rigid over time at ambient conditions. Previously, it was demonstrated that a PLA of lower stereoregularity was miscible with up to 30 wt% PEG. Aging was due to slow crystallization of PEG from the homogeneous amorphous blend. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg until aging essentially ceased when Tg of the amorphous phase reached the aging temperature. In the present study, this aging mechanism was tested with a crystallizable PLA of higher stereoregularity. Changes in thermal transitions, solid state structure, and mechanical properties were examined over time. Blends with up to 20 wt% PEG were miscible. Blends with 30 wt% PEG could be quenched from the melt to the homogenous amorphous glass. However, this composition phase separated at ambient temperature with little or no crystallization. Changes in mechanical properties during phase separation reflected increasing rigidity of the continuous PLA-rich phase as it became richer in PLA. Construction of a phase diagram for blends of higher stereoregular PLA with PEG was attempted.  相似文献   

14.
Poly(glycolide-co-caprolactone) (A)-poly(ethylene glycol) (B) ABA-type triblock copolymers (PGCE) were synthesized by bulk ring opening polymerization, using the hydroxyl endgroups of poly(ethylene glycol) (PEG) as initiator and stannous octoate as catalyst. The resulting copolymers were characterized by various analytical techniques. Gel permeation chromatographic analysis indicated that the polymerization product was free of residual monomers, PEG and oligomers. 1H NMR and differential scanning calorimeter results demonstrated that the copolymers had a structure of poly(glycolide-co-caprolactone) (PGC) chains chemically attached to PEG segments. All the PGCE copolymers showed improved hydrophilicity in comparison with the corresponding PGC copolymers with the same molar ratio of glycolidyl and caproyl units. The microspheres of PGCE copolymer exhibited rough surfaces quite different from the smooth surface of PGC microspheres. This phenomenon was attentively ascribed to the highly swollen ability of PGCE copolymers and the freeze-drying process in the microspheres fabrication.  相似文献   

15.
Poly(lactide) (PLA) is rapidly gaining interest as a biodegradable thermoplastic for general usage in degradable disposables. To improve mechanical properties, a PLA with low stereoregularity was blended with polyethylene glycol (PEG). Blends with up to 30 wt% PEG were miscible at ambient temperature. Blending with PEG significantly decreased the Tg, decreased the modulus and increased the fracture strain of PLA. However, the PLA/PEG 70/30 blend became increasingly rigid over time at ambient conditions. The mechanism of aging primarily under ambient conditions of temperature and humidity was studied. Changes in mechanical properties, thermal transitions and solid state morphology were examined over time. Aging was caused by slow crystallization of PEG. Crystallization of PEG depleted the amorphous phase of PEG and gradually increased the Tg. As Tg approached the aging temperature, reduced molecular diffusivity slowed the crystallization rate dramatically. Aging essentially ceased when Tg of the amorphous phase reached the aging temperature. The increase in matrix Tg and the reinforcing effect of the crystals produced a change in mechanical properties from elastomer-like to thermoplastic-like.  相似文献   

16.
The luminescent properties of poly(p-phenylenevinylene) (PPV) blending with poly (ethylene glycol) (PEG) were investigated in terms of their structural formation during sample preparation. The blended systems were prepared from an aqueous solution of water-soluble poly (xylylene tetrahydrothiophenium chloride) (PPV precursor) mixed with PEG, followed by heat treatment to remove the tetrahydrothiophene groups from the PPV precursor. Structural analysis showed that PEG could react with PPV precursor to form C-O-C linkage and carbonyl groups in PPV chains, interrupting their conjugated length as suggested by their Infrared, Raman and UV/vis spectroscopes. Wide angle X-ray scattering (WARS) of blended systems also showed that PPV in blends had less packing. As to luminescent properties, the UV/vis and photoluminescent (PL) spectra show that the energy gap needed to produce the excitons increased along with the increase of PL intensity when PPV was blended with PEG. Similar results were also found for the EL properties of ITO/polyblends/Al devices. The EL light emission from blends was blue-shifted (compared to PPV) with a rather low threshold electric field strength. The EL performance of polyblends was better than that of pure PPV. Among them, the PPV-50PEG showed the highest EL intensity. The improved EL efficiency was attributed to the dilution effect, interrupted conjugated length, and lower packing of PPV chains.  相似文献   

17.
Smart biomaterials composed of pH responsive polymers, poly((meth)acrylic acid), were synthesized using a precipitation polymerization technique. The microparticles were grafted with poly(ethylene glycol) (PEG) chains that are capable of complexing with the hydroxyl groups of the polyacid and interpenetrating into the mucus gel layer upon entry into the small intestine. Upon introduction of an alkaline solution, these materials imbibe a significant amount of water and create a highly viscous suspension. These materials have the necessary physicochemical properties to serve as mucoadhesive controlled release drug carriers for the oral delivery of drugs.  相似文献   

18.
The grafting of poly(ethylene glycol) functionalized by ester groups (MeO-PEG-ester) onto chitosan was studied and optimized using different reaction conditions. In a first procedure, the grafting was made from 6-O-triphenylmethyl-chitosan after protection of primary hydroxyl groups and in a second one, it was made directly onto chitosan. NMR spectroscopy was an important tool to study these reactions and the grafting is unequivocally showed up. Moreover, for each procedure, the solubility and surface properties of the obtained copolymers were evaluated and compared.  相似文献   

19.
Mechanical properties of miscible blends of high molecular weight poly(N-vinyl pyrrolidone) (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) of molecular weight 400 g/mol have been examined as a function of PVP-PEG composition and degree of hydration. The small-strain behavior in the linear elastic region has been evaluated with the dynamic mechanical analysis and compared with the viscoelastic behavior of PVP-PEG blends under large strains in the course of uniaxial drawing to fracture and under cyclic extension. A strong decoupling between the small-strain and the large strain properties of the blends has been observed, indicative of a pronounced deviation from rubber elasticity in the behavior of the blends. This deviation, also seen on tensile tests under fast drawing, is attributed to the peculiar phase behavior of the blends and the molecular mechanism of PVP-PEG interaction. Nevertheless, for the PVP blend with 36% PEG, under comparatively low extension rates, the reversible contribution to the total work of deformation up to ε=300% has been found to be maximum at around 70%, while the blends containing 31 and 41% PEG behave rather as an elastic-plastic solid and a viscoelastic liquid, respectively.  相似文献   

20.
R.C. Gosh 《Polymer》2009,50(5):1304-3511
The phase behaviors of aqueous polymer solutions are known to be affected by the presence of ions even if the polymer itself does not have any charges. We studied the effect of salt (sodium chloride) on the eutectic phase behavior of non-ionic polymer, poly(ethylene glycol) (PEG) in aqueous solutions using differential scanning calorimetry. We observed that the addition of NaCl increased the liquidus temperature of PEG and decreased that of water. As a result, a steep rise (or fall) is induced in the liquidus around the eutectic point. A simple Flory-Huggins lattice model for the mixture (PEG-water-NaCl) was applied to the experimental results. The model quantitatively reproduced the change in the liquidus both with and without NaCl. The obtained interaction parameters suggest that the increase of the PEG melting temperature by NaCl can be understood as the depletion of NaCl around PEG, possibly due to the image charge repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号