首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semi-interpenetrating polymer networks (SIPNs) and polymer mixtures (1:1 mass ratio) based on segmented polyester polyurethane (PU) with carboxylic groups and methacrylic copolymer (PM) with tertiary amine groups were studied by the electron spin resonance (ESR) spin label method. The concentration of functional groups varied from 0 to 0.45 mmol g−1 in both prepolymers. The ESR spectra of spin labelled PM component were used to characterise the heterogeneity of segmental motion and transitions due to the additional polymer interactions imposed by complementary functional groups. The results were deduced from the temperature dependent ESR spectra. Two component spectra reflect the effect of PU chains on segmental motion of the PM component below the macroscopic glass transition temperature, Tg. The ratio of the fast and slow component was related to the complex polymer-polymer interaction or extent of miscibility. Restrictions of segmental motion of PM chains increase with functional groups concentration and above certain concentration (0.25 mmol g−1) PM segments in the network assess faster motion suggesting a change in the local packing density and domain structure. An increased miscibility and disorganisation of the ordered domains are confirmed by the loss of spherulitic morphology and crystallinity at higher functional groups concentration. PU/PM mixtures reveal similar motional behaviour as SIPNs of the same composition. However, the differences in the fractional amount of fast and slow motions confirm better interpenetration and interaction of the two polymers in the SIPNs. The results of motional heterogeneity and polymer interactions were complemented with the Tgs.  相似文献   

2.
The motional transition and heterogeneity of semi‐interpenetrating networks (SIPNs) based on polyurethane (PU) with carboxylic groups and methacrylic copolymer (PM) with tertiary amine groups were studied by the electron spin resonance (ESR) spin probe method. The concentration of functional groups in both prepolymers varied from 0 to 0.45 mmol g?1. Spin‐probed SIPNs show that the temperature‐dependent spectra are sensitive to polymer interactions imposed by functional groups. These interactions determine the free volume distribution in the matrix and temperature at which motional transition takes place. The fraction of free volume increases with functional group concentration and reaches its maximum at 0.25 mmol g?1. Further increases in the functional group concentration reduce the free volume. The results of the networks with strong interactions are discussed in terms of the interference of the plasticizing effect of the PU component and the formation of possible cluster cross‐links, which restricts segmental motions. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
Polystyrene-block-polybutadiene copolymers (SB) with 0.5 mass fraction of styrene were studied by electron spin resonance (ESR) of nitroxide spin probes. The influence of the block length ( and ) and the solvation power of casting solvents on the motional dynamics of spin probe were measured over a wide temperature range. Two nitroxide radicals as spin probes were selected: 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl benzoate (BzONO) and 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (Tempol). Irrespective of the spin probe used two ESR spectral components differing in their motional properties above the phase transition of polybutadiene blocks (PB) were observed. The fast component was assigned to spin probes located in polybutadiene-rich domains and the slow component to spin probes in polystyrene-rich domains. The range of two spectral components and the phase transition of the slow ESR component, T5mT, depend on the block length. The influence of the interphase and accumulation of free volume in the interphase on the Tempol probe motion was investigated by changing copolymer morphology in the films casted from selective and nonselective solvents. The analysis of the motional heterogeneity from the ratio of the fast and slow motional component presents evidence that in the selective solvent for polystyrene (PS) blocks (2-butanone) the most irregular structure with a large interphase is formed. The difference in fast motion of spin probes indicates that the motional dynamic is related to the change of domain structure.  相似文献   

4.
Main chain and segmental dynamics of polyisoprene (PI) and poly(methyl methacrylate) (PMMA) chains in semi IPNs were systematically studied over a wide range of temperatures (above and below Tg of both polymers) as a function of composition, crosslink density, and molecular weight. The immiscible polymers retained most of its characteristic molecular motion; however, the semi IPN synthesis resulted in dramatic changes in the motional behavior of both polymers due to the molecular level interpenetration between two polymer chains. ESR spin probe method was found to be sensitive to the concentration changes of PMMA in semi IPNs. Low temperature spectra showed the characteristics of rigid limit spectra, and in the range of 293-373 K, complex spectra were obtained with the slow component mostly arising out of the PMMA rich regions and fast component from the PI phase. We found that the rigid PMMA chains closely interpenetrated into the highly mobile PI network imparts motional restriction in nearby PI chains, and the highly mobile PI chains induce some degree of flexibility in highly rigid PMMA chains. Molecular level interchain mixing was found to be more efficient at a PMMA concentration of 35 wt.%. Moreover, the strong interphase formed in the above mentioned semi IPN contributed to the large slow component in the ESR spectra at higher temperature. The shape of the spectra along with the data obtained from the simulations of spectra was correlated to the morphology of the semi IPNs. The correlation time measurement detected the motional region associated with the glass transition of PI and PMMA, and these regions were found to follow the same pattern of shifts in α-relaxation of PI and PMMA observed in DMA analysis. Activation energies associated with the Tg regions were also calculated. T50G was found to correlate with the Tg of PMMA, and the volume of polymer segments undergoing glass transitional motion was calculated to be 1.7 nm3. C-13 T measurements of PMMA carbons indicate that the molecular level interactions were strong in semi IPN irrespective of the immiscible nature of polymers. The motional characteristics of H atoms attached to carbon atoms in both polymers were analyzed using 2D WISE NMR. Main relaxations of both components shifted inward, and both SEM and TEM analysis showed the development of a nanometer - sized morphology in the case of highly crosslinked semi IPN.  相似文献   

5.
The electron‐spin‐resonance (ESR) spin‐probe method, was used to study the heterogeneity of denture resins based on poly(methyl methacrylate). Results for three resins processed by microwave energy, conventional curing and cold curing (depending on the curing procedure and exposed to ageing in various environmental conditions) were compared. All three cured resins were stored over the same time (1200 h) in distilled water at ambient temperature and in artificial saliva at 348 K. The temperature‐dependent ESR spectra of a spin probe dispersed in the denture resins are analyzed in terms of line‐shapes and line‐widths. The appearance of two spectral components was taken as an indication of resin heterogeneity. The results reveal that the cold‐cured resin has a lower local density in comparison with microwave and conventionally cured resin. The amount of residual monomer also contributes to the local motion of polymer segments. The change of denture resins exposed to ageing is influenced both by the structure of the original resin and the ageing conditions. Restricted motion of a spin probe incorporated into the acrylic resins exposed to accelerated ageing suggests additional crosslinking of polymer chains. The differences are observed for all the investigated resins, but the highest change is observed with the cold‐cured resin. The ESR results are accompanied by Tg and Tm measurements. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
Studies on the permeable regions of the dense polyurethane-based membranes were performed by electron spin resonance spectroscopy (ESR) using TEMPO spin probe incorporated into the membrane via diffusion from the vapour phase. The ESR spectra were measured as a function of temperature and microwave power for polyurethanes (PU) varying in the molecular structure and morphology. It was found that the TEMPO spin probe exhibited anisotropic rotation whose anisotropy increased as temperature decreased and was more pronounced for PU with shorter soft segments. The simplified method was used to obtain apparent correlation time τc enabling the comparison of the polyurethanes studied. This approach was based on the Arrhenius relation of τc vs. 1/T determined from motionally narrowed ESR spectra and on the assumption that this behaviour prevails over a broader temperature range at temperatures generally greater than Tg of a given polymer.  相似文献   

7.
Different hydroxyl content poly(styrene-co-p-(hexafluoro-2-hydroxyisopropyl)-α-methylstyene) [PS(OH)] copolymers were synthesized and blends [noted for PP-X] with poly(propylene carbonate) [PPC] were prepared by casting from chloroform solution. The miscibility, micro heterogeneity and hydrogen bonding interaction of the component polymers were investigated by Differential Scanning Calorimetry (DSC), Electron Spin Resonance (ESR) spin probe method and Micro Raman spectroscopy. DSC results showed that the PP-2, PP-5, PP-8, PP-12 blends exhibited two distinct Tgs, indicating immiscibility, while the PP-20 and PP-27 blends were miscible with the existence of a single Tg. ESR results indicated that the probe molecule: Tempo couldn't give clear micro phase separation or miscibility information and thus was not sensitive to the investigated polymer blends system. On the contrary for all the blends spin probed with the probe molecules: Tempol and Tamine, two spectral components with different rates of motion: ‘fast’ and ‘slow’ motion were observed in different temperature range, which indicated the existence of micro heterogeneity on the molecular level; the more mobile PPC-rich micro phase and the more rigid PS(OH) rich micro phase. In addition, the scale of miscibility was progressively enhanced due to the increasing hydrogen bonding interaction between the hydroxyl in PS(OH) and the oxygen atoms in PPC. Meanwhile it was found that the degree of the probe molecule rotation detectable in the ESR spectrum was dependent on the polymer matrix rigidity and the strength of the hydrogen bonding between the probe molecule and the polymer matrix. Micro Raman substantiated the existence of the PS(OH)-rich micro phase and the PPC-rich micro phase. The hydrogen bonding strength between PS(OH) and PPC and the mixing level of the component polymers were increased gradually with the increase of hydroxyl content in the PS(OH) copolymer.  相似文献   

8.
The relaxations of natural rubber (NR)/poly(methyl methacrylate) (PMMA) interpenetrating polymer networks (IPNs) were studied using dynamic mechanical analysis, electron spin resonance (ESR) and solid state NMR spectroscopy. Samples with a lower concentration of PMMA in IPNs (25 wt%) showed only one relaxation, which corresponds to NR with a slight shift to higher temperature. IPNs with 35 wt% of PMMA showed very broad transitions arising from β‐ and α‐relaxations in PMMA, with the β‐relaxation slightly shifted to lower temperature. These compositions also showed a higher modulus at all temperatures. Highly phase separated IPNs showed a complete drop of modulus at 423 K. Higher crosslinking in the NR phase increases the miscibility and decreases the temperature difference between transitions, while in PMMA it increases the phase separation and does not affect the β‐relaxation of the PMMA chains. The ESR results showed that PMMA chains located in the PMMA‐rich and NR‐rich domains have different motional characteristics. The strong interaction between PMMA and NR chains was also observed by carbonyl relaxation in solid state NMR spectra. It was found that medium level crosslinking is needed for better interpenetration between phases. © 2013 Society of Chemical Industry  相似文献   

9.
Different hydroxyl content poly(styrene‐cop‐(hexafluoro‐2‐hydroxylisopropyl)‐α‐methylstyene) [PS(OH)‐X] copolymers were synthesized and blends with 2,2,6,6‐tetramrthyl‐piperdine‐1‐oxyl end spin‐labeled PEO [SLPEO] were prepared. The miscibility behavior of all the blends was predicted by comparing the critical miscible polymer–polymer interaction parameter (χcrit) with the polymer–polymer interaction parameter (χ). The micro heterogeneity, chain motion, and hydrogen bonding interaction of the blends were investigated by the ESR spin label method. Two spectral components with different rates of motion were observed in the ESR composite spectra of all the blends, indicating the existence of microheterogeneity at the molecular level. According to the variations of ESR spectral parameters Ta, Td, ΔT, T50G and τc, with the increasing hydroxyl content in blends, it was shown that the extent of miscibility was progressively enhanced due to the controllable hydrogen bonding interaction between the hydroxyl in PS(OH) and the ether oxygen in PEO. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2312–2317, 2004  相似文献   

10.
This third paper in this series regarding structure and dynamics of the polyurethane-based membranes studied with TEMPO spin probe presents the results of the ESR measurements performed to characterise mobility of segments in the permeable regions of the membranes. The variations of the spin probe motions with temperature have been analysed for the series of polyurethanes (PU) differing in molecular structure and compared with the results of the DSC studies. Along with T50 G, the other temperatures, Tn, Ti, Tτ, at which the significant change in dynamics occurs have been determined and correlated with the length of the PU soft and hard segments, and then discussed with regard to the respective relationships of Tg. The results have demonstrated the sensitivity of the ESR method to the segmental motions, which have not been detected by the DSC technique. From the DSC and ESR data the size of the motional chain segment in various PUs has been estimated, which has been found to follow the trend that polymers with higher Tg have bulkier segments. Two unusual observations have been made, concerning the deviation from the Arrhenius relation at high temperature for some PUs, and the increased mobility of the TEMPO molecules in some poly(urethane-urea)s after their thermal treatment. These results have been interpreted so far either in terms of the possible translational diffusion of the TEMPO molecules for those PUs showing lesser amount of the hard segments, or in terms of the increased free volume resulting from the temperature induced structural changes within the permeable regions of poly(urethane-urea)s.  相似文献   

11.
The hydrophilicity of poly(vinyl alcohol) (PVA) was lowered by acetalization with propionic aldehyde. After UV irradiation of pendent styrylpyridinium groups, these prepolymers form networks of different hydrophobicity depending on the degree of acetaization. PVA films containing different amounts of propionic acetals were doped with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl. Then, the ESR spectra of the spin probe entrapped in the polymeric network were monitored while allowing different solvents to diffuse into the polymer. The rate of spin probe mobilization depends on the hydrophilicity/hydrophobicity of both the polymer network and the solvent. However, the modified polymers, even the more hydrophobic ones, are hydrophilic in comparison to “really” hydrophobic polymers. This is probably caused by the character of the parent polymer (PVA), unreacted hydroxy groups. S++uiations of the ESR spectra have shown that in polymers with a higher degree of acetalization domains of different hydrophobicity are built in which the spin probes have a different mobility. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Summary It is well known that allyl monomers polymerize only with difficulty and yield polymers having low molecular weights, i.e., oligomers. Inevitably, free-radical multiallyl crosslinking polymerization provides network polymers consisting of oligomeric primary polymer chains, i.e., having abundant dangling chains. This led to the development of novel flexible network polymers such as amphiphilic network polymers (I) consisting of short primary polymer chains and long crosslink units with opposite polarities, simultaneous interpenetrating networks (II) consisting of both polyurethane (PU) and polymethacrylate (PM) networks with oligomeric primary polymer chains, and network polymers (III) consisting of centipede-type primary polymer chains. Thus, the solution copolymerizations of benzyl methacrylate with tricosaethylene glycol dimethacrylate in the presence of lauryl mercaptan yielded I consisting of nonpolar, short primary polymer chains and polar, long crosslink units. The opposite type of I was prepared by the copolymerization of 2-hydroxyethyl methacrylate, a polar monomer having a hydroxyl group, with heneicosapropylene glycol dimethacrylate, a nonpolar monomer having a poly(oxypropylene) unit. The equimolar polyaddition crosslinking reaction of poly(methyl methacrylate-co-2-methacryloyloxyethyl isocyanate) with tri(oxytetramethylene) glycol, leading to PU networks, and the free-radical crosslinking copolymerization of methyl methacrylate with tri(oxytetramethylene) dimethacrylate in the presence of CBr4, leading to PM networks, were progressed simultaneously, providing II formed via the topological crosslink between PU and PM network structures. The post-copolymerizations of oligomeric allyl methacrylate/alkyl methacrylate precopolymers, having different amounts of pendant allyl groups and different molecular weights, with allyl benzoate/vinyl benzoate monomer mixtures were conducted to give III.  相似文献   

13.
Influence of polyurethane (PU) structure on the nature of PU/clay nanocomposite was studied using varying amounts of trimethylol propane (TMP) as branching agent. The effect of hydroxyl groups in the modifier of organoclays on the structure of PU/clay nanocomposites was studied. Nanocomposites were characterized using wide‐angle X‐ray diffraction measurements (WAXD) and transmission electron microscopy (TEM). The results show that formation of completely exfoliated and well dispersed polyurethane/clay nanocomposites via in situ polymerization, is facilitated by the presence of tethering groups on the clay surface and an ability to form branched and crosslinked structures. Incorporation of long alkyl chains in addition to tethering hydroxyl groups in the modifier structure of the clay did not significantly improve the compatibility of linear PU with the clay. Intercalated thermoplastic polyurethane/clay nanocomposites, prepared using poly(caprolactone diol) as soft segment and isophorone diisocyanate and 1,4‐butanediol as hard segments show increase in storage tensile moduli at temperatures before glass transition temperature when functional groups capable of chemically reacting with the growing polymer chains are present in the clay modifier. This is indicative of improved interaction of the polymer with the clay surface when the modifier has larger number of hydroxyl groups. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A polyurethane–chitosan (PU–CH) coating was synthesized from castor-oil-based PU prepolymer and highly deacetylated and depolymerized chitosan. The films cast with the coating were used for the characterization. X-ray photoelectron spectroscopy, a surface-sensitive technique, indicated the chemical bonding between the chitosan and PU prepolymer as well as the enrichment of chitosan on the surface of the film PU–CH. Electron spin resonance (ESR) spectroscopy using the nitroxyl radical 4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl (4-hydroxy-TEMPO) as a reporter group was used to study the chain mobility in the film PU–CH. It was observed that T50G of the probe and the first glass transition temperature (Tg1) of the film PU–CH were 10 and 18°C higher than those in the PU film, respectively, and the activation energy (27.0 kJ mol−1) of tumbling for the probe covalently bonded with PU–CH was 12.8 kJ mol−1 higher than that of the probe with the film PU. It suggests that the molecular motion in the PU–CH was restricted by grafted and crosslinked interpenetrating polymer networks (IPNs). The results of the differential thermal analysis and thermogravimetric analysis proved that the thermostability of the film PU–CH was significantly higher than that of the film PU, and the Tg1 value is in good agreement with that calculated from ESR. It could be concluded that the IPNs resulted from the chitosan grafting and crosslinking with PU exist in the film PU–CH. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1321–1329, 1998  相似文献   

15.
Summary The spin probe ESR method was applied to study natural rubber and synthetic polyisoprenes with different content of cis-configuration over a wide temperature range. The ESR spectra of natural rubber near and above the glass transition indicate the existence of two distinctly different mobilities as a consequence of the spin probe distribution in sol and gel phase. The results show that the spin probe method can yield information about the inhomogeneity of the polyisoprene matrix and the character of gel phase.  相似文献   

16.
以物理共混的方法制备了纳米凹凸棒土(AT)/聚氨酯(PU)共混纤维。通过红外测试表明:AT与PU的硬段发生相互作用,增强了PU链段之间的氢键作用。动态力学性能分析的结果表明:AT可视作为物理交联点,限制了PU分子链的运动。相对于纯PU纤维,纳米AT/PU共混纤维的拉伸力学性能有了明显的提高,热稳定性能也有一定改善。  相似文献   

17.
A Wolińska-Grabczyk 《Polymer》2004,45(13):4391-4402
The cyclohexane and water permeability properties as well as the structure of the polyurethane-based pervaporation membranes were investigated. The polyurethanes (PU) were synthesised from poly(oxytetramethylene) diols (PTMO) of various molar masses, 2,4-tolylene diisocyanate (2,4-TDI), and different chain extenders used in various molar ratios. The microstructure of the synthesised PU was investigated by means of the density measurements, DSC method, and ESR technique with a spin probe TEMPO incorporated into PU via diffusion. The results show that only the ESR method was sensitive to all structural modifications applied enabling the correlations between the PU molecular structure and the mobility of the spin probe to be established. The diffusion coefficients (D) of cyclohexane and water were calculated based on the pervaporation results and the sorption data, and were correlated with the rotation correlation time (τ) of the spin probe as a measure of the microstructure of the permeable domains. The exponential and linear empirical equations were obtained for the PU/cyclohexane and PU/water systems, respectively, as a result of the fitting procedure applied. These correlations demonstrate that a spin probe method might be useful to characterise free volume, especially in case of complex membrane materials, and to predict the flux of permeant through the pervaporation membranes.  相似文献   

18.
The broad‐line 1H‐NMR study of the polymer blend composed of isotactic polypropylene and ethylene–propylene–diene monomer rubber was carried out. The NMR measurements were performed on the samples of the polymer blend and on the components of the blend in the temperature range covering the glass‐transition regions of all studied polymers. Conclusions were drawn from the temperature dependencies of the second moment M2 and of the data obtained by the decomposition of the spectra into the components related to the motionally distinct regions of the partially crystalline polymer. The mass fractions of the amorphous, intermediate, and crystalline domains and the widths of the spectra related to the particular phases were computed from the spectra. A double glass transition was revealed for the polymer blend. Different mechanisms of the motional processes related to the glass transition were deduced from the data. The gradual increase of the number of the chains and the enhancement of the chain mobility within noncrystalline regions of the polymer blend are responsible for the motion related to the lower glass transition and only transformation of the hindered motion into free motion was found in the temperature region of the upper glass transition. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 247–252, 2004  相似文献   

19.
The electron spin resonance (ESR) spectra of end‐group spin labelled poly(ethylene oxide) (SLPEO) using 2,2,6,6‐tetramethyl‐piperdine‐1‐oxyl nitroxide and its blends with poly(styrene‐co‐4‐vinylphenol) (STVPhs) of different hydroxyl contents were recorded over a wide temperature range. For a blend of SLPEO and pure polystyrene (PS), the ESR spectrum was composed of a single motion component, indicating that PS was immiscible with PEO. For blends composed of SLPEO and different‐hydroxyl‐content STVPhs, two spectral components with different motion rates were observed over a certain temperature range. The difference between the motion rates should be attributed to micro‐heterogeneity in the blends, with the faster rate corresponding to a nitroxide radical motion trapped in the PEO‐rich domain and the slower rate corresponding to a nitroxide radical motion trapped in the STVPh‐rich domain. Variations in the values of a number of the ESR parameters (Ta, Td and T50G) and the apparent activation energy (Ea) with hydroxyl content in the blends indicated that the miscibility of the blends increased with increasing hydrogen‐bonding density due to specific interactions between the hydroxyl groups in STVPh and the ether oxygens in PEO. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
《Polymer》1987,28(6):885-888
One- and two-dimensional proton nuclear magnetic resonance spectra of blends of a polyurethane (PU) and poly(styrene-co-styrene sulphonic acid) (poly(S-co-SSA)) are analysed to determine the mechanism of interaction between the two components of the blend. A sample of poly(S-co-SSA) containing 7.9 mol% SSA is used, and the blends contain 58% poly(S-co-SSA). In dimethyl sulphoxide solution, the labile protons of the SSA groups are transferred to the tertiary nitrogen of the N-methyldiethanolamine (MDEA) chain extender of the hard segment of the PU and to the urethane, allophanate and other secondary structures. Model compound studies and a two-dimensional homonuclear correlated proton spectra pulse sequence are used to make the assignments in the spectra. The labile proton is transferred preferentially to the secondary structures, followed by the urethane nitrogen, and then by the tertiary nitrogen of the MDEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号