首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Bingjie Sun 《Polymer》2008,49(11):2704-2708
Two-dimensional (2D) correlation FTIR spectroscopy was used to investigate the dynamic mechanism of poly(aspartic acid) during the heating process. According to the 2D asynchronous correlation spectra, the CO vibration band of Amide I was separated into three peaks at 1637, 1645 and 1677 cm−1, assigned to α helical, random coil and β antiparallel conformation, respectively. And α helical structure would transform into the more ordered and stable conformation of β antiparallel in heating. In the region of 3700-2700 cm−1, the H-contained groups were analyzed; the loosening of hydroxyl is found to change prior to the NH-related hydrogen bonds and the conformational reorganization of hydrocarbon chains.  相似文献   

2.
Thermally induced conformational changes that occur in high-density polyethylene (HDPE) crystal were studied by mid-infrared (MIR) spectroscopy. Spectral changes of four conformational “defect mode” bands in 1390-1280 cm−1 region were observed during the heating up to the melt. The spectra were analyzed by generalized two-dimensional (2D) correlation technique to elucidate correlations in their responses against temperature. Among the conformational defect bands, two bands at 1368 and 1308 cm−1 have traditionally been assigned to non-planar conformers of gtg′ (kink) and gtg. However, the present study shows the intensity increment of the band at 1368 cm−1 happens at a lower temperature than that of the band at 1308 cm−1. This finding is in favor of the assignment proposed by Cates et al., in which the 1368 cm−1 band is assigned to the gtg conformation excluding the involvement of kink. The spectral correlation among the band at 1368 (gtg), 1353 (double-gauche, gg′), and 1341 cm−1 (end-gauche, eg) has also been studied by 2D correlation analysis. As a result, it was found that the formation of gg′ and eg sequences mostly proceeds at a temperature range higher than 115 °C. The formation of gtg conformer sequence measured by the band at 1368 cm−1 apparently proceeds in two steps: the first at a temperature around 70 °C and the later one occurring at a temperature very close to Tm. The results of this study make correlation relationships clear in the temperature dependency of MIR bands due to conformational disorder sequences.  相似文献   

3.
Jing Yu 《Polymer》2007,48(12):3477-3485
The crystallization of poly(?-caprolactone)-poly(ethylene oxide)-poly(?-caprolactone) (PCL-PEO-PCL) triblock copolymer was studied using FTIR and 2D FTIR spectroscopies. The weight ratio of PCL/PEO in the investigated sample was about 20:1. Although it is such a low amount of PEO that it cannot form any crystals, the PEO block undergoes some structural change in the cooling process. It was established that the PCL constituent crystallized quickly, and then forced the noncrystallizable PEO constituent to form a tighter structure (helical conformation) from the trans zigzag conformation. Besides, through the 2D IR analysis, more exact and detailed assignments of the overlapped CH2 bands have been made - the 1193 cm−1 band is attributed to methylene next to the carbonyl group, whereas the 1162 cm−1 and 1295 cm−1 bands are assigned to other common methylenes.  相似文献   

4.
Shin Watanabe  Isao Noda 《Polymer》2008,49(3):774-784
Thermally induced structural and conformational changes in polyethylene (PE) samples were explored by using near-infrared (NIR) spectroscopy. The differences in the temperature-dependent structural disordering process among six PE samples were depicted by monitoring the intensities of NIR bands characteristic of orthorhombic crystalline phase. The temperature dependency of bands in the NIR region that have been considered to be due to orthorhombic crystalline lattice was compared to that of a band at 1378 cm−1 due to the methyl symmetric bending mode. The intensity decrease of the band in the mid-infrared (MIR) region seems to sensitively reflect the overall disordering of orthorhombic crystalline structure. As a result of this study, the intensity decrease of the bands in the NIR spectral region was found to proceed at lower temperature than that of the band at 1378 cm−1. This finding suggests the status of orthorhombic crystalline structure probed by the intensity of the band at 1378 cm−1 and that by the “crystalline” bands in the NIR spectral region may not be identical. The NIR spectra were further analyzed by two-dimensional (2D) correlation spectroscopy to provide the in-depth analysis of NIR bands. The 2D correlation spectroscopy has detected the presence of two NIR bands at 4342 and 4290 cm−1 due to orthorhombic crystalline phase and those at 5840 and 5640 cm−1 due to amorphous phase. The hetero-spectral 2D correlation analysis was carried out between the NIR spectral region of 4365-4240 cm−1 and the well-established MIR spectral region for CH2 wagging deformation region of 1390-1240 cm−1, where bands due to nonplanar conformer are detected. This approach allowed us to determine NIR bands, which behave in a way similar to MIR bands originating from conformational defect sequences that exist in the orthorhombic crystalline lattice, the amorphous domain and the chain fold regions. As a result of the hetero-spectral 2D NIR-MIR correlation spectroscopic studies on the development of conformational defect sequence in three types of PE samples, it was concluded that the intensity of a band at 4265 cm−1 changes in the same manner as the MIR bands at 1368, 1353 and 1308 cm−1 assignable to gtg, gg and gtg′ (kink) conformations. This finding means that the state of conformational disorder in PE crystal can be studied by monitoring the intensity of the NIR band at 4265 cm−1. The use of NIR spectroscopy makes it possible to directly probe the degree in the formation of conformational defect sequences in thick PE products typically produced in industry, which cannot be studied by MIR spectroscopy. This paper thus provides in-depth fundamental understandings on NIR spectra of PE as well as the results of our study regarding structural and conformational changes in PE crystals probed by NIR spectroscopy.  相似文献   

5.
The second order Raman signals around the G′-band region of graphite and carbon nanotubes have been investigated at more than 15 excitation laser lines. Two distinct Raman bands have been observed around 2700 cm−1; a prominent one is due to the so-called G′-band and the other is a weak band around 2450 cm−1. Both two bands can be from the double resonance process involving two phonons around the K-point in the phonon dispersion of a two-dimensional graphite. The 2450 cm−1-band has exhibited little power dependence, whereas the intensity of G′-band has shown large photon energy dependence as already reported. The 2450 cm−1-band and the G′-band correspond to non-dispersive q = 0 and fully-dispersive q = 2k, respectively. From the phonon dispersion and the corresponding phonon frequency, the 2450 cm−1-band can be assigned as an overtone mode of LO phonon (i.e. 2LO). This is revealed by calculated Raman spectra of graphite with proper electron-phonon matrix elements. The present study is the first report on the origin and assignment of the 2450 cm−1-band, which is based on the double resonance Raman scattering.  相似文献   

6.
Experimental conditions and mathematical fitting procedures for the collection and analysis of Raman spectra of soot and related carbonaceous materials have been investigated and optimised with a Raman microscope system operated at three different laser excitation wavelengths (514, 633, and 780 nm). Several band combinations for spectral analysis have been tested, and a combination of four Lorentzian-shaped bands (G, D1, D2, D4) at about 1580, 1350, 1620, and 1200 cm−1, respectively, with a Gaussian-shaped band (D3) at ∼1500 cm−1 was best suited for the first-order spectra. The second-order spectra were best fitted with Lorentzian-shaped bands at about 2450, 2700, 2900, and 3100 cm−1. Spectral parameters (band positions, full widths at half maximum, and intensity ratios) are reported for several types of industrial carbon black (Degussa Printex, Cabot Monarch), diesel soot (particulate matter from modern heavy duty vehicle and passenger car engine exhaust, NIST SRM1650), spark-discharge soot (Palas GfG100), and graphite. Several parameters, in particular the width of the D1 band at ∼1350 cm−1, provide structural information and allow to discriminate the sample materials, but the characterisation and distinction of different types of soot is limited by the experimental reproducibility of the spectra and the statistical uncertainties of curve fitting. The results are discussed and compared with X-ray diffraction measurements and earlier Raman spectroscopic studies of comparable materials, where different measurement and fitting procedures had been applied.  相似文献   

7.
M. Baibarac  S. Lefrant 《Carbon》2009,47(5):1389-84
Electrochemical polymerization of 2,2′-bithiophene (BTh) on single-walled carbon nanotube (SWCNT) films has been studied by Raman scattering and infrared absorption spectroscopy. Covalent functionalization of SWCNTs with poly(bithiophene) (PBTh) in its un-doped and doped states is demonstrated. The occurrence of a charge transfer process at the interface of PBTh and SWCNTs, is shown by: (i) an up-shift of the Raman lines associated with the radial breathing modes of SWCNTs that reveals both a doping process and an additional twisting together as a rope with the conducting polymer as binding agent; (ii) a new Raman band in the range 1430-1450 cm−1 indicating the functionalization of SWCNTs with PBTh in doped and un-doped states; (iii) strong absorption bands situated in the interval 600-800 cm−1 resulting from steric hindrance produced by the nanotube binding to the polymeric chain. Treatment of the PBTh/SWCNT composite with aqueous NH4OH solution forms un-doped PBTh covalently functionalized SWCNTs. At the resonant excitation of the metallic tubes, an additionally enhanced Raman process is generated by plasmon excitation in the metallic nanotubes. It is evidenced by a particular behavior in the Stokes and anti-Stokes branch of the PBTh Raman line at 1450 cm−1.  相似文献   

8.
The combination of Fourier transform Raman spectroscopy and thermal analysis has been proved to be adequate for the study of the quantitative structural changes which take place in amorphous poly(ethylene 2,6-naphthalate) on annealing. Different conformer contents were found in the annealed samples depending on annealing conditions. In general, annealing of the amorphous poly(ethylene 2,6-naphthalate) from the glassy state induces a conformational transition of gauche to trans. The structure obtained during crystallization is characterized by a three-phase conformational model, including an amorphous phase, a rigid amorphous phase and a crystalline phase. The crystallization is further characterized by a three-zone process, firstly a primary crystallization process, secondly a variation of the rigid amorphous phase with a constant value of the crystalline phase and thirdly a secondary crystallization process. The bandwidth at half intensity at 1721 cm−1 in the Raman spectrum varied between 32 cm−1 for the complete amorphous phase and 7 cm−1 for the total rigid phase, the sum of the rigid amorphous and crystalline phase. The bandwidth at half intensity at 1721 cm−1 was directly related to the amount of the total rigid phase and confirmed by the variation of the heat capacity increase at the glass transition temperature. Two complementary bands in the Raman spectrum, at 1107 and 1098 cm−1, were found to be related to the trans and gauche isomers. A difference was measured between the total trans content and the amount of rigid phase due to the presence of some trans conformations in the amorphous phase. The extrapolation of the bandwidth at half intensity at 1721 cm−1 to the value of zero, corresponding to the complete crystalline phase, gave a melting enthalpy of 196 J/g and the corresponding density of the crystalline phase was 1.4390 g/cm3. A complete rigid phase structure was obtained by a melting enthalpy of 144 J/g and a density of 1.4070 g/cm3.  相似文献   

9.
The structure, dispersibility, and crystallinity of poly(3-hydroxybutyrate) (PHB) and poly(l-lactic acid) (PLLA) blends are investigated by using Raman microspectroscopy. Four kinds of PHB/PLLA blends with a PLLA content of 20, 40, 60, and 80 wt% were prepared from chloroform solutions. Differences in the Raman microspectroscopic spectra between the spherulitic and nonspherulitic parts in the blends mainly lie in the CO stretching band and C-O-C and C-C skeletal stretching bands of PHB and PLLA. In addition to such bands, the Raman spectra of spherulitic structure in the blends show a band due to the CH3 asymmetric stretching mode at an unusually high frequency (3009 cm−1), suggesting the existence of a C-H?OC hydrogen bond of PHB in the spherulite. The existence of C-H?OC hydrogen bond is one of the unambiguous evidence for the crystallization of PHB component in the blends. Therefore, it is possible to distinguish Raman bands due to each component in the spectra of blends. Raman spectra of the spherulitic structure in the blends are similar to a Raman spectrum of pure crystalline PHB, while those of the nonspherulitic parts in the blends have each component peak of PHB and PLLA. The present study reveals that the PHB component is crystallized in the blends irrespective of the blend ratio, and that both components are mixed in the nonspherulite parts. The crystalline structure of PHB and the nonspherulitic parts of PLLA in the blends are characterized, respectively, by the unique band of C-H?OC hydrogen bond at 3009 cm−1 and CCO deformation bands near 400 cm−1.  相似文献   

10.
We have studied the effect of BaCl2 dopant on the optical and microstructural properties of a polymer poly(vinyl alcohol) (PVA). Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using FTIR, UV-visible, XRD and DSC techniques. The observed peaks around 3425 cm−1, at 1733 cm−1 and 1640 cm−1 in the FTIR spectra were assigned to O-H, CC stretching and acetyle CO group vibrations, respectively. In the doped PVA shift in these bands can be understood on the basis of intra/inter molecular hydrogen bonding with the adjacent OH group of PVA. The UV-visible spectra shows the absorption bands around 196 nm and shoulders around 208 nm with different absorption intensities for doped PVA, which are assigned to n→π* transition. This indicates the presence of unsaturated bonds mainly in the tail-head of the polymer. Optical band energy gap is estimated using UV-visible spectra and it decreases with increasing dopant concentration. The powder XRD shows an increase in crystallinity in the doped PVA, which arises due to the interaction of dopant with PVA causing a molecular rearrangement within the amorphous phase of polymer. These modifications also influence the optical property of the doped polymer. The DSC study also supports increasing crystalline thickness and degree of crystallinity due to doping.  相似文献   

11.
The microcrystalline flaked graphites SFG6 and SFG44 were evaluated with regard to their compatibility with propylene carbonate (PC) by in situ Raman microscopy and postmortem scanning electron microscopy (SEM) study. PC is employed as electrolyte component in lithium-ion batteries. However, when used with certain types of graphitic materials, exfoliation occurs. To compare the effects of exfoliation, the first lithium insertion properties of these graphitic materials were measured with in situ Raman microscopy. Lithium half-cells containing either 1 M LiClO4 1:1 (w/w) ethylene carbonate (EC):dimethyl carbonate (DMC) or 1:1 (w/w) EC:PC were investigated. The commencement of the exfoliation process was detected in SFG44 EC:PC by the appearance of a shoulder band at 1597 cm−1 on the G-band (1584 cm−1) below 0.9 V versus Li/Li+. The band (assigned as the exfoliation or E-band) at higher wavenumbers (1597 cm−1) corresponded to solvated lithium ions intercalated into graphite. The in situ Raman spectra of SFG6 in EC:DMC or EC:PC and SFG44 in EC:DMC did not show the E-band and instead displayed regular lithium intercalation spectra.In situ Raman microscopy and SEM were further employed to study the exfoliation process observed for SFG44 in 1:1 (w/w) EC:PC, when the potential was held under steady-state conditions at 0.8, 0.6 and 0.3 V, respectively. A blue-shift in the E-band from 1597 to 1607 cm−1 was observed as the potential was lowered. SEM images showed dissimilar degrees of exfoliation at these three potentials.  相似文献   

12.
Regenerated Bombyx mori silk fibroin in formic acid was electrospun and the morphological, chemical and mechanical properties of these nanofibers were examined by field emission environmental scanning electron microscopy (FESEM), Raman spectroscopy (RS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and tensile testing. FESEM indicated that the average fiber diameter was less than 100 nm and circular in cross section. This paper maps the silk fibroin molecular conformations of each step of the sample preparation and the electrospinning process. The secondary structural compositions (random and β-sheet) of the fibroin were determined by FTIR and RS. The crystallinity index of the electrospun fiber, calculated as the intensity ratio of 1624 (β-sheet) and 1663 (random) cm−1 FTIR bands was higher than that of the pristine fiber. Raman spectra of the amide I (1665 cm−1, random) to amide III (1228 cm−1, β-sheet) ratio of the electrospun fiber was less than that of the pristine fiber indicative of higher β-sheet content. The fiber crystallinity, determined by XRD, showed a lower value for the electrospun fiber. The electrospun fiber shows small but significant increases in the β-sheet content in comparison with the pristine fiber. Dissolution of fibroin in formic acid enhances β-sheet crystallization and may facilitate β-sheet formation in electrospun fiber. The electrospun random silk mat had a Young's modulus, ultimate tensile strength and strain of 515 MPa, 7.25 MPa and 3.2%, respectively.  相似文献   

13.
The isothermal crystallization of syndiotactic polypropylene (sPP) was investigated by in situ Fourier transform infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). It was found that the ordered helical structure developed during the induction period of the isothermally crystallization of sPP. Moreover, the normalized intensity profiles of the characteristic FTIR absorption bands of the sPP helical conformation at 1005, 867 and 812 cm?1 are not synchronized during the induction period of the sPP crystallization, which suggest that these bands should be corresponding to the helical chain with various persistence lengths. The non-zero value of the initial normalized intensity for the band at 867 cm?1 indicates that there are sPP chains in the short helical conformation in the initial amorphous state. However, the helical chains with longer persistence length can only be observed with increasing the annealing time in the induction period as suggested by the intensity changes of the bands at 1005 and 812 cm?1. Particularly, the intensity of the characteristic absorbance band at 1005 cm?1 starts to increase at an earlier time than that of 812 cm?1. These observations are discussed in terms of the critical length by Doi theory. It can be estimated that the sPP melt system is stable when the persistence length of helical sequences is less than 16 monomer units. The results could be helpful on the understanding the pathway of polymer chains packing in the early stage of the crystallization of semi crystalline polymers.  相似文献   

14.
Quantifying ion-induced defects and Raman relaxation length in graphene   总被引:1,自引:0,他引:1  
Raman scattering is used to study disorder in graphene subjected to low energy (90 eV) Ar+ ion bombardment. The evolution of the intensity ratio between the G band (1585 cm−1) and the disorder-induced D band (1345 cm−1) with ion dose is determined, providing a spectroscopy-based method to quantify the density of defects in graphene. This evolution can be fitted by a phenomenological model, which is in conceptual agreement with a well-established amorphization trajectory for graphitic materials. Our results show that the broadly used Tuinstra-Koenig relation should be limited to the measure of crystallite sizes, and allows extraction of the Raman relaxation length for the disorder-induced Raman scattering process.  相似文献   

15.
The structure of chemically prepared poly-p-phenylenediamine (PpPD) was investigated by Resonance Raman (RR), FTIR, UV-VIS-NIR, X-ray photoelectron (XPS), X-ray Absorption at Nitrogen K edge (N K XANES), and Electron paramagnetic Resonance (EPR) spectroscopies. XPS, EPR and N K XANES data reveal that polymeric structure is formed mainly by radical cations and dication nitrogens. It excludes the possibility that PpPD chains have azo or phenazinic nitrogens, as commonly is supposed in the literature. The RR spectrum of PpPD shows two characteristic bands at 1527 cm−1 and 1590 cm−1 that were assigned to νCN and νCC of dication units, respectively, similar to polyaniline in pernigraniline base form. The presence of radical cations was confirmed by Raman data owing to the presence of bands at 1325/1370 cm−1, characteristic of νC-N of polaronic segments. Thus, all results indicate that PpPD has a doped PANI-like structure, with semi-quinoid and quinoid rings, and has no phenazinic rings, as observed for poly-o-phenylenediamine.  相似文献   

16.
Surface-enhanced Raman scattering (SERS) was used to investigate C60 self-assembling in solvents like pyrrolidine (Py) and N-methyl-2-pyrrolidinone (NMP) as well as in binary mixtures of o-dichlorobenzene (DCB)/acetonitrile (ACN) and DCB/NMP. For a correct evaluation of the modifications of Raman spectra induced by the C60 aggregation, we have also presented the variations due to the measuring method, i.e., the signal dependence of the metallic support type and the surface roughness. The interaction between C60 and the Au substrate, appearing as a chemical component in SERS generation, is mainly evidenced by a band at ∼342 cm−1. In the aggregated phase, the intermolecular interactions lead to a reduction in the parent Ih C60 symmetry as observed by a modified phonon spectrum. As a general feature, the spectral range below 800 cm−1 is the most diagnostic for the aggregate assignment, the main indicative being the disappearance of the Raman bands associated to the radial vibration modes. SERS measurements have revealed two stages in the self-assembling of C60 in NMP. In the beginning, charge-transfer molecular complexes that associate slowly in stable aggregates are formed by the binding of an NMP molecule to the C60 cage. These complexes are noticed in the SERS spectrum by the replacement of the original Hg(1) band at ∼269 cm−1 with two others at ∼255 and ∼246 cm−1. In the aggregated phase, when using NMP and P as a solvent, the Raman spectrum reveals new bands that appear around 94 and 110-118 cm−1, which are associated with the interball interactions. In a DCB/ACN solvent mixture, the self-assembling process is driven by weak van der Waals type forces and resembles a precipitation, yielding C60 clusters of different size.  相似文献   

17.
Yi Shen 《Polymer》2006,47(20):7111-7114
Two-dimensional Raman spectroscopy has been applied to provide the information on charge carriers and thermal stability of a doped poly(3-chlorothiophene) (PCTh) film. The strong spectral intensity at 1420 cm−1 shows that positive polarons are the major charge carriers in doped PCTh. On the other hand, peaks in the 2D contour maps separate the overlapped bands around 1386 cm−1, confirming the existence of positive bipolarons in PCTh. The positive asynchronous cross peak located at 1420/1386 cm−1 further indicates that bipolarons have a higher thermal stability compared with polarons in the doped PCTh. The increase of the spectral intensity at 1454 cm−1 and the decrease of the spectral intensity at 1420 cm−1 indicate that during the heating process, a structural change occurs in the PCTh film.  相似文献   

18.
Pure and Zn2+ and/or F doped hydroxyapatite (HA) were synthesized by the precipitation method and detection of ion incorporations into the HA structure was investigated by a non invasive Fourier transform infrared (FTIR) spectroscopic technique. The synthesized materials were sintered at 1100 °C for 1 h. The Zn2+ addition amount was kept constant at 2 mol% whereas F amount was changed. The weight fractions of the HA and CaO were calculated by Rietveld analysis by using GSAS. Co-doping of Zn2+ and F ions increased the stability of HA. A detailed analysis of FTIR spectroscopy was performed to observe whether HA structure was formed or not. The bands corresponding to the (PO43−) functional group and (OH) functional group were observed. Moreover, the ion incorporation into the HA structure and the amount of the ions were analyzed by FTIR spectroscopy. The OH…F bands were observed at 711 cm−1 and 3543 cm−1. The Zn–O stretching band was observed at 3403 cm−1 and 433 cm−1. The area calculation under the OH…F bands and (OH) stretching and librational modes of the bands revealed that as the F amount increased, the area under the bands at 711 cm−1 and 3543 cm−1 increased whereas the area under the (OH) stretching and librational modes of the bands decreased due to the fact that F ion replaced with (OH) ion in HA structure. All these results showed that Zn2+ and F ions were successfully incorporated into the HA structure. Moreover, the amount of F ions in the HA structure was successfully confirmed by determination of the area under the F and (OH) related bands.  相似文献   

19.
Normal modes and their dispersion are obtained for planar-zigzag form II (tttt) of syndiotactic polypropylene (sPP) in the reduced zone scheme using Urey-Bradley force field and Wilson's GF matrix method as modified by Higgs. It is observed that this all trans backbone conformation can be characteristized by a band at 1233 cm−1 (calculated at 1239 cm−1). A comparison is made with the spectra of its isotactic and helical form. Characteristic features of the dispersion curves such as crossing, repulsion and von Hove type singularities (regions of high density-of-states) have been explained. Heat capacity obtained from the density-of-states agrees with the experimental data up to 250 K at which the glass transition sets in and the experimental curve exhibits a marked change in slope.  相似文献   

20.
A detailed characterisation of a synthetic naphthalene-derived mesophase pitch, in its as-received state and during pyrolysis, has been performed. The study has been conducted by means of various techniques and with a particular attention to Raman microspectroscopy. The Raman spectra show features in common with the naphthalene precursor, i.e., a broad and complex band at 1150-1500 cm−1 and a multicomponent G band at 1600 cm−1. These features correspond to the vibration modes of the molecules of the pitch and more especially to the non-aromatic C-C bonds involved in alkyl groups, aryl-aryl bonds or naphthenic rings. The pyrolysis of the pitch into coke takes place within a narrow temperature range (480-500 °C) through the elimination of hydrogen and light alkanes resulting from the breaking of homolytic C-H bonds and naphthenic cycles, respectively. This process initiates a swelling of the pitch. The analysis of the Raman features shows that the structure of the pitch is only slightly affected within this temperature range. Conversely, significant structural changes of the material (as shown by the vanishing of the multicomponent bands at 1600 and 1150-1500 cm−1) are evidenced beyond 750 °C, simultaneously with a hydrogen release and an increase of the true density. This phenomenon corresponds to the extension of the graphene layers of the coke and the formation of a distorted carbon network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号