首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a simple methodology to incorporate interacting magnetic nanoparticles (mNPs) into cylinder forming block copolymer templates. Poly(styrene-block-isoprene) (PS-b-PI) with PI cylinders and poly(styrene-block-4vinylpyridine) (PS-b-P4VP) with PS cylinders were used as the block copolymer templates and γ-Fe2O3 NPs coated with oleic acids were pre-synthesized for the interacting mNPs. Regardless of the template block copolymers, the selective location of mNPs and the size of mNP aggregates are clearly altered by changing casting solvents. When good solvents for both blocks were used as casting solvents, mNPs are readily aggregated during the solvent evaporation. In contrast, under selective casting solvents for the minor blocks, the mNPs were selectively trapped into the cylinder domains through the facile inversion of micelles during solvent evaporation. The interplay between mNPs and block copolymers was also tested with different molecular weights of block copolymers.  相似文献   

2.
Bruno Schmaltz 《Polymer》2009,50(4):966-4248
This study focuses on the synthesis and the structural characterization of various branched star-block copolymers (polyisoprene-block-polystyrene)6C60 with a fullerene C60 as a core. Well defined 6-arm stars (PI-b-PS)6C60 with a low polydispersity and a precise control of the number of branches were prepared by grafting PI-b-PS diblock copolymers through the polystyrene block onto the C60 core. The self-assembled structures formed in bulk were studied by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS) for both symmetric and asymmetric polystyrene-block-polyisoprene (PS-b-PI) diblock arms in the strong-segregation regime (65 ≤ χN ≤ 115). Various microstructures including lamellae, hexagonal packings of PS and PI cylinders as well as a gyroid phase were obtained by varying the volume fraction of polystyrene (fPS) of the branches, leading to the formation of ordered, periodic and localized nanoscale dispersions of the C60 in a polymer matrix including planes, threads and a 3D bicontinuous network of C60.  相似文献   

3.
Low dielectric constant nanoporous poly(methyl silsesquioxane) (PMSSQ) was prepared through the templating of an amphiphilic block copolymer, poly(styrene-b-2-vinylpyridine) (PS-b-P2VP). The experimental and theoretical studies suggest that the intermolecular hydrogen bonding interaction is existed between the PMSSQ precursor and PS-b-P2VP. The result of modulated differential scanning calorimeter (MDSC) indicates the miscible hybrid of the PMSSQ precursor/PS-b-P2VP. The miscible hybrid and the narrow thermal decomposition of the PS-b-P2VP lead to nanopores in the prepared films from the results of transmission electronic microscopy (TEM), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). The effects of the loading ratio and the PS block volume ratio (fPS: 0.74, 0.46 and 0.35) on the morphology and properties of the prepared nanoporous PMSSQ films were investigated. The AFM and TEM studies suggest that the uniform pore morphology should be prepared from a modest porogen loading level for the optimum intermolecular hydrogen bonding. The PS-b-P2VP with a smaller fPS requires a higher loading level to obtain the uniform pores. The refractive index and dielectric constant of the prepared nanoporous films could be tuned by the loading ratio in the range of 1.361-1.139 and 2.359-1.509, respectively. However, both properties are independent of the fPS. The prepared study demonstrates the control of the morphology and properties of the nanoporous films through the polymer structure.  相似文献   

4.
5.
We investigated, via small angle X-ray scattering, depolarized light scattering, rheometry, and transmission electron microscopy, the phase behavior of the mixture of a symmetric polystyrene-block-poly(n-pentyl methacrylate) copolymer (PS-b-PnPMA) showing the closed-loop phase behavior and excellent baroplasticity, and dodecanol, a PnPMA-selective solvent. We found that the addition of a selective solvent is simple, but very effective to obtain various microdomains including hexagonally packed cylinders and gyroids. Also, with increasing temperature, the mixtures showed multiple ordered-to-ordered transitions (OOTs) in addition to upper ordered-to-disordered transition (UODT). The first observation of gyroid microdomains in PS-b-PnPMA is very important, although they have been widely reported in many block copolymers, for instance, PS-block-polyisoprene copolymer (PS-b-PI) and PS-block-poly(d,l-lactide) copolymer (PS-b-PLA). Since the gyroid microdomains of PS-b-PnPMA show excellent baroplasticity, external pressure instead of temperature could easily change the microdomains.  相似文献   

6.
Molecular weight distribution effect on the morphological behavior of polystyrene-block-polyisoprene (PS-b-PI) diblock copolymers was investigated. PS-b-PI samples were prepared by anionic polymerization and further fractionated by HPLC to obtain the fractions of similar average molecular weight and composition but of narrower distributions in both molecular weight and composition. The strategy is to use reversed-phase LC to fractionate the PI block and normal phase LC to fractionate the PS block with a minimal effect on the other blocks. The interfacial thickness, grain size and the phase transition behavior of the unfractionated and fractionated PS-b-PI were compared by X-ray reflectivity, small angle X-ray scattering, transmission electron microscopy and rheological measurements. The fractionated PS-b-PI with more homogeneous molecular weight and composition exhibits a narrower interface, larger grain size and a sharper morphological transition compared to the unfractionated PS-b-PI.  相似文献   

7.
Weidong Zhang 《Polymer》2008,49(21):4569-4575
The novel trifunctional reversible addition-fragmentation chain transfer (RAFT) agent, tris(1-phenylethyl) 1,3,5-triazine-2,4,6-triyl trithiocarbonate (TTA), was synthesized and used to prepare the three-armed polystyrene (PS3) via RAFT polymerization of styrene (St) in bulk with thermal initiation. The polymerization kinetic plot was first order and the molecular weights of polymers increased with the monomer conversions with narrow molecular weight distributions (Mw/Mn ≤ 1.23). The number of arms of the star PS was analyzed by gel permeation chromatography (GPC), ultraviolet visible (UV-vis) and fluorescence spectra. Furthermore, poly(styrene-b-N-isopropylacrylamide)3 (PS-b-PNIPAAM)3, the three-armed amphiphilic thermosensitive block copolymer, with controlled molecular weight and well-defined structure was also successfully prepared via RAFT chain extension method using the three-armed PS obtained as the macro-RAFT agent and N-isopropylacrylamide as the second monomer. The copolymers obtained were characterized by GPC and 1H nuclear magnetic resonance (NMR) spectra. The self-assembly behaviors of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 in mixed solution (DMF/CH3OH) were also investigated by high performance particle sizer (HPPS) and transmission electron microscopy (TEM). Interestingly, the lower critical solution temperature (LCST) of aqueous solutions of the three-armed amphiphilic block copolymers (PS-b-PNIPAAM)3 decreased with the increase of relative length of PS in the block copolymers.  相似文献   

8.
The influence of morphology on micromechanical deformation behaviour of blends consisting of a lamellar forming styrene/butadiene star block copolymer and polystyrene homopolymer (hPS) was studied by transmission electron microscopy (TEM). The pure star block copolymer and the microphase separated blends revealing lamellar structure with polystyrene (PS) lamella thickness in the range of about 20 nm showed homogeneous plastic deformation of the PS lamellae. The macrophase separated blends with PS particles in lamellar matrix exhibited debonding at the particle–matrix interface associated with extensive plastic deformation of the surrounding matrix. The blends containing PS matrix deformed via crazing.  相似文献   

9.
Polystyrene-b-poly(methyl acrylate) (PS-b-PMA) block copolymer with PS volume fraction of 25.2 vol% was synthesized by atom transfer radical polymerization. Non-pretreated silicon wafers were used as the substrates to prepare perpendicular oriented PS cylinders in PMA matrix via solvent annealing which could induce the transformation of spheres to vertically oriented and hexagonally packed cylinders. The spherical microdomains were formed after the evaporation of solvents from the solutions of the block copolymer in selective solvents mixed from methanol, acetone and dichloromethane. The thickness of films could be as thick as 1000 nm, which were much thicker than usual cases and the cylinders came from the directional coalescence of the spheres, thus any pre-treatments of the substrates were not required for perpendicular orientation. The structures were characterized by small angle X-ray scattering (SAXS), transmission electron microscope (TEM), atom force microscopy (AFM) and grazing incidence small angle X-ray scattering (GISAXS).  相似文献   

10.
The microhardness behaviour of binary blends comprising a styrene/butadiene star block copolymer and polystyrene homopolymer (hPS) over a wide composition range is investigated. In particular, the interrelation between the morphology, tensile properties (such as yield stress σY and the Young's modulus, E) and the microhardness H is explored. As in the case of microphase separated block copolymers and binary block copolymer blends, as reported in preceding publications, a clear deviation in the microhardness behaviour from the additivity law is observed. The lamellar block copolymer system is compared with the nanostructure of semicrystalline polymers having a lamellar morphology. A dependence of H upon PS lamellar thickness is found. For the samples with lamellar morphology the hardness value was found to correlate with the mechanical parameters obtained by uni-axial tensile testing according to: H/σY∼2.2 and E/H∼22.  相似文献   

11.
Bokyung Kim  Jong Hak Kim  Jehan Kim 《Polymer》2009,50(15):3822-291
We report the transition behavior and the ionic conductivity of ion-doped amorphous block copolymer, based on two compositionally different polystyrene-block-poly(2-vinylpyridine) copolymers (PS-b-P2VPs) that can self-assemble into nanostructures, where P2VP block is ionophilic to lithium perchlorate (LiClO4). The transition temperatures of LiClO4-doped PS-b-P2VP, like the order-to-disorder transition (TODT), were measured by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). The selective ionic coordination to the nitrogen units of P2VP block leads to the increase of the repulsive interactions between two block components from weak- to strong-segregation regime with increasing amount of LiClO4, which results subsequently in the increased TODT. However, for a compositionally asymmetric PS-b-P2VP under lamellar morphology, the ionic conductivity by the addition of LiClO4 was remarkably increased at higher temperatures, representing that the effective ionic coordination at the greater volume fraction of P2VP block component improves the ionic conductivity as the temperature approaches to a rubbery phase.  相似文献   

12.
Limei Xu  Hui Yang  Chunsheng Li 《Polymer》2010,51(16):3808-4000
A novel route for a preparation of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) block copolymer vesicles induced by supercritical carbon dioxide (scCO2) is demonstrated. When PS-b-PEO block copolymer solutions in tetrahydrofuran (THF) are treated with scCO2 at 70 °C for different times, PS-b-PEO copolymers first assemble into aggregated spheres; then aggregated spheres change into large compound micelles and finally evolve into vesicles. The possible formation mechanism of the vesicles is discussed.  相似文献   

13.
B.H. Sohn  S.H. Yun 《Polymer》2002,43(8):2507-2512
We obtained perpendicular lamellar orientations in thin films of symmetric polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, on self-assembled monolayers (SAMs) of 3-(p-methoxyphenyl)propyltrichlorosilane (MPTS) prepared on silicon wafers. In contrast to completely parallel lamellae on silicon wafers having a native oxide layer, perpendicular lamellae at the MPTS interface with parallel lamellae at the air interface were directly observed by transmission electron microscopy (TEM) in cross-sectional view. The perpendicular lamellae at the MPTS interface were attributed to the non-preferential (neutral) MPTS-covered substrate to both PS and PMMA blocks. The neutrality of the SAMs of MPTS was confirmed by the similar interfacial tension values of the SAMs of MPTS with PS and PMMA, estimated by contact angle measurements.  相似文献   

14.
Xiaoqiang Xue 《Polymer》2010,51(14):3083-1313
Here, we described a strategy for preparing well-defined block copolymers, poly(styrene)-b-poly(vinyl acetate) (PS-b-PVAc), containing middle azobenzene moiety via the combination of the reversible addition-fragmentation chain transfer (RAFT) polymerization and “click” chemistry. Firstly, a novel RAFT agent containing α-alkyne and azobenzene chromophore in R group, 2-(3-ethynylphenylazophenoxycarbonyl)prop-2-yl-9H-carbazole-9-carbodithioate (EACDT), was synthesized and used to mediate the RAFT polymerization of styrene (St). Well-defined α-alkyne end-functionalized poly(styrene) (PS) was obtained. Secondly, the RAFT polymerization of vinyl acetate (VAc) was conducted using functionalized RAFT reagent with ω-azide structure in Z group, O-(2-azidoethyl) S-benzyl dithiocarbonate (AEBDC). Well-defined ω-azide end-functionalized poly(vinyl acetate) (PVAc) was obtained. Afterwards, the resulting α-alkyne terminated PS was coupled by “click” chemistry with the azide terminated PVAc. The block copolymer, PS-b-PVAc, was obtained with tailored structures. The products from each step were characterized and confirmed by GPC, 1H NMR, IR and differential scanning calorimetry (DSC) examination. Kinetics of the trans-cis-trans isomerization from azobenzene chromophore in PS-b-PVAc and PS were investigated in CHCl3 solutions.  相似文献   

15.
The dispersion of magnetic nanoparticles (NPs) in homopolymer poly(methyl methacrylate) (PMMA) and block copolymer poly(styrene-b-methyl methacrylate) (PS-b-PMMA) films is investigated by TEM and AFM. The magnetite (Fe3O4) NPs are grafted with PMMA brushes with molecular weights from M = 2.7 to 35.7 kg/mol. Whereas a uniform dispersion of NPs with the longest brush is obtained in a PMMA matrix (P = 37 and 77 kg/mol), NPs with shorter brushes are found to aggregate. This behavior is attributed to wet and dry brush theory, respectively. Upon mixing NPs with the shortest brush in PS-b-PMMA, as-cast and annealed films show a uniform dispersion at 1 wt%. However, at 10 wt%, PS-b-PMMA remains disordered upon annealing and the NPs aggregate into 22 nm domains, which is greater than the domain size of the PMMA lamellae, 18 nm. For the longest brush length, the NPs aggregate into domains that are much larger than the lamellae and are encapsulated by PS-b-PMMA which form an onion-ring morphology. Using a multi-component Flory-Huggins theory, the concentrations at which the NPs are expected to phase separate in solution are calculated and found to be in good agreement with experimental observations of aggregation.  相似文献   

16.
Homo/miktoarm star polymers were successfully synthesized via combination of the “arm-first” and “coupling-onto” strategies. Firstly, the multifunctional coupling agent (core), 2, 4, 6-tris(3-ethynylphenyl)-1,3,5-triazine-2,4,6-triamine (TPTTA), was synthesized. Secondly, the linear polystyrene-Cl (PS-Cl) and poly(2-(dimethylamino)ethyl methacrylate)-Br (PDMAEMA-Br) were prepared by atom transfer radical polymerization (ATRP) method. Then, the linear PS-Cl and PDMAEMA-Br chains were modified by a nucleophilic substitution reaction with sodium azide. Finally, homo/miktoarm star polymers PS3 and PS(PDMAEMA)2 were designed by click reaction between the core (TPTTA) and the arm precursor (PS-N3 or PDMAEMA-N3). The structures of the PS3, PS(PDMAEMA)2 and the precursors were all characterized by NMR, FT-IR, UV and GPC analysis. Moreover, the self-assembly behaviors of the miktoarm amphiphilic copolymer PS(PDMAEMA)2 was also investigated by transmission electron microscopy (TEM).  相似文献   

17.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

18.
This study investigates the use of homogeneous reverse atom transfer radical polymerization for the synthesis of polystyrene (PS) initiated by conventional radical peroxide with copper bromide in the lower oxidation state and a 2,2′‐bypyridine complex as the catalyst. In a second stage, an amphiphilic block copolymer containing methyl methacrylate (MMA) was synthesized via normal atom transfer radical polymerization in two steps, followed by partial hydrolysis of the methyl ester linkage of the MMA block under acidic conditions. The block copolymer PS699b‐P(MMA232/MAA58) obtained had a narrow molecular weight dispersity (Ð < 1.3). The structure of the precursor, PS‐b‐PMMA, and resultant polymer, was characterized and verified by FTIR and 1H‐NMR spectroscopy as well as size exclusion chromatography. The self‐aggregation of PS699b‐P(MMA232/MAA58) in organic solvents was monitored by UV spectroscopy, whereas the morphology and size of the formed microaggregates were investigated by transmission electron microscopy and dynamic light scattering. The results indicate that this copolymer formed regular spherical reverse micelles with a core–shell structure. The atomic force micrographs of PS699b‐P(MMA232/MAA58) showed a rough surface morphology owing to microphase separation of the block copolymer. In addition, thermal characterization was performed by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature of PS699b‐P(MMA232/MAA58) decreased significantly (65°C), when compared to PS and PMMA, suggesting that an enhanced movement of the polymer chains resulted by the segregation of the hydrolyzed P(MMA232/MAA58) block. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Wenchun Fan  Sixun Zheng 《Polymer》2008,49(13-14):3157-3167
Polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) block copolymers with linear and tetra-armed star-shaped topological structures were synthesized via sequential atomic transfer radical polymerization (ATRP). With pentaerythritol tetrakis(2-bromoisobutyrate) as the initiator, the star-shaped block copolymers with two sequential structures (i.e., s-PMMA-b-PS and s-PS-b-PMMA) were prepared and the arm lengths and composition of the star-shaped block copolymers were controlled to be comparable with those of the linear PS-b-PMMA (denoted as l-PS-b-PMMA). The block copolymers were incorporated into epoxy resin to access the nanostructures in epoxy thermosets, by knowing that PMMA is miscible with epoxy after and before curing reaction whereas the reaction-induced phase separation occurred in the thermosetting blends of epoxy resin with PS. Considering the difference in miscibility of epoxy with PMMA and/or PS, it is judged that the reaction-induced microphase separation occurred in the systems. The design of these block copolymers allows one to investigate the effect of topological structures of block copolymers on the morphological structures of the thermosets. By means of atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS), the morphology of the thermosets was examined. It is found that the nanostructures were formed in the thermosets containing l-PMMA-b-PS and s-PS-b-PMMA block copolymers. It is noted that the long-range order of the nanostructures in the epoxy thermosets containing l-PMMA-b-PS is obviously higher than that in the system containing s-PS-b-PMMA. However, the macroscopic phase separation occurred in the thermosetting blends of epoxy resin with s-PMMA-b-PS block copolymer.  相似文献   

20.
Chao Wang  Tingmei Wang  Xianqiang Pei 《Polymer》2009,50(22):5268-2608
The solution behavior of poly(styrene)-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer with added poly(4,4′-oxydiphenylenepyromellitamic acid) (POAA) homopolymer in DMF is studied by dynamic light scattering (DLS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM). It is found that coaggregation takes place when mixing PS-b-P4VP block copolymer and POAA homopolymer in DMF due to the strong interpolymer hydrogen-bonding between POAA chains and P4VP blocks. The coaggregation is a diffusion-controlled process and the complexation-induced aggregates are very stable. NMR measurements demonstrate that the resultant aggregates are much more swollen compared with typical amphiphilic block copolymer core-shell micelles. DLS measurements with Eu3+ as a probe combined with TEM observation, are employed to study the structure of the aggregates. Results reveal that the formed aggregates are core-shell spheres with the P4VP/POAA complexes as core and the PS blocks as shell when the weight ratio of POAA to PS-b-P4VP is lower. However, a core-shell-corona structure forms with a thin layer of POAA chains adsorbed on the initial core-shell aggregates with increasing weight content of POAA to 60%. Finally, possible mechanisms of the structural transitions are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号